
Natural Computing Series

Series Editors: G. Rozenberg
Th. Bäck A.E. Eiben J.N. Kok H.P. Spaink

Leiden Center for Natural Computing

˘

ttp://www.springer.com/series/More information about this series at h 4190

Advisory Board: S. Amari G. Brassard K.A. De Jong C.C.A.M. Gielen
T. Head L. Kari L. Landweber T. Martinetz Z. Michalewicz M.C. Mozer
E. Oja G. Paun J. Reif H. Rubin A. Salomaa M. Schoenauer
H.-P. Schwefel C. Torras D. Whitley E. Winfree J.M. Zurada

http://www.springer.com/series/4190

Peter R. Lewis • Marco Platzner • Bernhard Rinner

Editors

Self-aware Computing
Systems
An Engineering Approach

Jim T rresen • Xin Yaoø

ISSN 1619-7127
Natural Computing Series
ISBN 978-3-319-39674-3 ISBN 978-3-319-39675-0 (eBook)
DOI 10.1007/978-3-319-39675-0

Library of Congress Control Number:

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein
or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

2016942574

Editors
Peter R. Lewis Marco Platzner
School of Engineering & Applied Science
Aston University
Birmingham, United Kingdom Paderborn, North Rhine-Westphalia

Germany
Bernhard Rinner
Institute of Networked and Embedded Systems

Department of Informatics Alpen-Adria-Universität Klagenfurt
University of Oslo Klagenfurt am Wörthersee
Oslo, Norway Austria

Xin Yao

University
Birmingham, United Kingdom

 of Birmingham

Department of Computer Science
Paderborn University

School of Computer Science

Jim T rresenø

Foreword

This book considers the design of new computation systems that are in some ways
more responsive to the environment and their own state than current system designs
and aim to be more reliable through the creation of self-aware and self-expressive
systems. One of the driving forces of this work is the realisation of the growth in
system complexity and the difficulty of using current “standard” methods and de-
signs to continue to create working systems. This is certainly relevant, as the interest
in the design and understanding of complex computing systems in technical appli-
cations has been growing significantly in various research initiatives like autonomic,
organic, pervasive or ubiquitous computing and in the multi-agent system commu-
nity. There have been many novel applications demonstrating a wide range of self-*
properties, as well as studies looking also at emerging global behaviour due to self-
organised local interaction. The authors of this book present the results of a large
European cooperative project focusing specifically on self-awareness, which may
be seen as one of the essential backgrounds for developing and supporting the other
self-* properties, which is addressed here by the term “self-expression”.

Ever since researchers have realised that machines could be programmed to have
increasingly adaptive behaviors, there has been much research on how to introduce
adaptive behaviour and more biological like capabilities into systems – more types
of reasoning, more types of awareness, and more types of intelligent processing.
Particularly important in adaptation is that the system has the knowledge and the
capabilities that allow it to do these adaptations in novel situations and at runtime.
There are many examples of large-scale programmes to foster the understanding
of the necessary attributes and architectures of systems capable of these adapta-
tions. Hence there were programs on adapting routers and networks in real time
(e.g., DARPA’s Active Networks), platforms and other plug and play architectures
with robust real time services (e.g., DARPA’s META program; Europe’s AUTOSAR
(AUTomotive Open System ARchitecture), programs that worked to understand
emergent behaviour and make use of it (Europe’s Organic Computing), systems
with computational reflection used for resource management (e.g., reflective archi-
tectures), and, of course, an enormous amount of work on multi-agent systems and
autonomous computing.

v

vi Foreword

In this landmark EU project, these slowly developing themes, drawn from a wide
diversity of fields, have been brought together and further developed with both
thoughtful discussions on foundations and new research and developments in the
engineering of several application areas.

One particularly important aspect of this book is the way in which it builds up
our repertoire of engineering methods for self-awareness by purposely drawing its
concepts for self-awareness from a diversity of fields and its examples from a diver-
sity of applications. Most importantly, these applications span across different levels
of computational systems, from agents and applications (interactive music systems
in Chapter 14) to middleware services (Chapter 11) to adaptive networks (Chapter
10) and even hardware (Chapters 8, 9 and 12.)

Starting from insights into “self-awareness” achieved by other disciplines like
psychology and philosophy, the notions of “computational self-awareness” and
“self-expression” are systematically developed. The majority of the book focuses
on computational systems that require some form of anticipation where the new al-
gorithms and methods are needed to provide the appropriate anticipatory behaviour.
In practice, these methods can include different forms of self-awareness (such as
awareness of goals, of the current state and readiness of system resources, of one’s
planning process and of the ordering of events), such that the system is not sim-
ply reacting to events and changes, but can anticipate them. The ideas and mecha-
nisms outlined are applied to a number of interesting applications: Computational
finance applications using heterogeneous computing clusters are investigated and in-
clude self-adaptive algorithms that are supported by hardware; low-latency adaptive
network processing; run-time reconfigurable hardware acceleration; heterogeneous
computing and hardware/software co-processing for algorithmic trading and recon-
figurable hardware acceleration of self-optimisation of reconfigurable hardware de-
signs. Self-awareness in distributed smart camera networks is considered for both
single cameras at a node level and multiple camera systems within a network. In-
teresting bio-inspired methods are aimed at the network level, artificial pheromones
are employed to construct a local neighbourhood graph, allowing adaptation in the
network as topologies change. A hypermusic demonstrator is considered as a third
application. This considers various methods and techniques to enable adaptability
(self-expression) in musical output. Three methods within this application are the
focus of this work, each providing different input information and overall levels
of information: SoloJam provides rather overarching rhythmic shaping; Funky Sole
Music provides what might be considered more specific, lower level, inputs such as
walking tempo, movement types and foot activity; PheroMusic considers more links
between musical soundscapes.

Thus, the book provides a comprehensive introduction to self-aware computation
providing a broad range of new theoretical background and foundation before mov-
ing on to consider details of architectures and techniques to help design self-aware
computational systems, from nodes to networks. Many of the problems that have
been addressed in this book will continue to be timely for many years to come and
could well provide the focus of research strands within many research fields. Partic-
ular challenges remain with respect to performance, safety and security properties

Foreword

of such systems. Although self-awareness is supposed to improve the performance
of computational systems in complex environments, there is still a lack of formal
frameworks for rigorously arguing about the behaviour of such systems.

The authors are all well known in this research area and the editors, Lewis,
Platzner, Rinner, Torresen and Yao have done an excellent job in pulling together
what is an excellent book.

Los Angeles Kirstie Bellman
Karlsruhe Hartmut Schmeck
York Andy Tyrrell

March 2016

vii

Preface

This book is the first ever to focus on the emerging field of self-aware computing
from an engineering perspective. It first comprehensively introduces fundamentals
for self-awareness and self-expression in computing systems, proposing the new
notion of computational self-awareness. It then focuses on architectures and tech-
niques for designing self-aware computing systems at the node and network levels.
Finally, the effectiveness of these techniques is demonstrated on a variety of case
studies. While a number of books on related topics such as self-adaption and self-
organisation, and even self-awareness concepts in computing, have already been
published, this book is unique as it provides a holistic view of self-aware comput-
ing including its relationship with self-expression, and the process of engineering
such systems, i.e., a thorough understanding of how to model and build self-aware
computing systems based on design patterns and techniques.

This book targets graduate students and professionals in the fields of computer
science, computer engineering, and electrical engineering, but also practitioners and
scientists from other fields interested in engineering systems with advanced proper-

ix

Self-aware computing is an emerging field of research. It considers systems and ap-
plications able to proactively gather and maintain knowledge about aspects of them-
selves, learning and reasoning on an ongoing basis, and finally expressing them-
selves in dynamic ways, in order to meet their goals under changing conditions. The
aspects they might be aware of include their own internal state, capabilities, goals,
environment, behaviour and interactions. The presence of gathered knowledge per-
mits advanced intelligent decision making leading to self-expression: that is, effec-
tive, autonomous and adaptive behaviour, based on self-awareness. Self-awareness
and self-expression capabilities are key to designing and operating future computing
systems that will inherently and autonomously deal with high levels of dynamics
and uncertainty, heterogeneity, scalability, resource constraints and decentralisation.
Concepts of self-awareness have been established in psychology, philosophy and
cognitive science but are relatively new to computing. In computing systems, our
concepts of self-awareness and self-expression integrate and enhance a number of
recent approaches dealing with systems with so-called self-* properties, e.g., self-
adaptation, self-organisation and self-healing.

x Preface

ties relying on their ability to reason about themselves in a complex environment.
The authors and editors of this book are active researchers in various aspects related
to self-aware computing systems. They have a strong track record in successfully
collaborating on this topic, for example, through the European FET project “Engi-
neering Proprioception in Computing Systems (EPiCS)”. The extensive joint expe-
rience of the contributors makes this edited book consistent and well integrated.

The book reports some of the latest results in self-aware and self-expressive com-
puting, and we hope it serves as a launchpad for further research discussions and
new ideas in the future.

Birmingham Peter R. Lewis
Paderborn Marco Platzner
Klagenfurt Bernhard Rinner
Oslo
Birmingham Xin Yao

March 2016

Therefore, we specifically recommend this book as reading material for the
graduate level or for self-study on self-aware computing systems.

Jim T rresenø

Acknowledgements

• Chapters 6 and 7 were also supported by EPSRC Grants (Nos. EP/I010297/1,
EP/K001523/1 and EP/J017515/1).

• Chapter 8 was also supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901)
and the International Graduate School on Dynamic Intelligent Systems of
Paderborn University.

• Chapter 9 was also supported in part by HiPEAC NoE, by the European Union
Seventh Framework Programme under grant agreement numbers 287804 and
318521, by the UK EPSRC, by the Maxeler University Programme, and by
Xilinx.

• Chapter 12 was also supported in part by the China Scholarship Council, by
the European Union Seventh Framework Programme under grant agreement
numbers 287804 and 318521, by the UK EPSRC, by the Maxeler University
Programme, and by Xilinx.

• Chapter 13 was also supported by the research initiative Mobile Vision with
funding from the Austrian Institute of Technology and the Austrian Federal
Ministry of Science, Research and Economy HRSMV programme BGBl. II
no. 292/2012.

• Chapter 14 was also supported by the Research Council of Norway under grant
agreement number 240862/F20.

• Peter Lewis would like to thank the participants of the Dagstuhl Seminar
“Model-Driven Algorithms and Architectures for Self-aware Computing Sys-
tems”, Seminar Number 15041, for many insightful discussions on notions of
self-aware computing.

xi

The research leading to many results in this book was conducted during the EPiCS

no. 257906.
The contributors would like to acknowledge additional support for research

performed in individual chapters of this book.

project (Engineering Proprioception in Computing Systems) and received funding
from the European Union Seventh Framework Programme under grant agreement

Contents

1 Self-aware Computing: Introduction and Motivation 1
Peter R. Lewis, Marco Platzner, Bernhard Rinner, Jim
Xin Yao
1.1 Self-aware Computing: A New Paradigm . 1
1.2 Organisation of This Book . 4

Part I Concepts and Fundamentals

2 Self-awareness and Self-expression: Inspiration from Psychology . . . 9
Peter R. Lewis, Arjun Chandra, and Kyrre Glette
2.1 Introduction to Self-awareness . 9
2.2 Key Concepts for Self-aware Systems . 11

2.2.1 Public and Private Self-awareness . 12
2.2.2 Levels of Self-awareness . 13
2.2.3 Self-awareness in Collective Systems 15
2.2.4 Self-expression . 15

2.3 Computational Self-awareness . 16
2.3.1 Private and Public Computational Self-awareness 16
2.3.2 Levels of Computational Self-awareness 17
2.3.3 Collective and Emergent Computational Self-aware

Systems . 19
2.4 Summary . 21

3 Relationships to Other Concepts . 23
Kyrre Glette, Peter R. Lewis, and Arjun Chandra
3.1 Introduction . 23
3.2 Self-awareness in Artificial Intelligence . 25
3.3 Self-awareness in Collective Systems . 25
3.4 Formal Models for Self-awareness . 26
3.5 Self-awareness in Engineering . 27
3.6 Self-awareness in Pervasive Computing . 29

xiii

T rresen, andø

xiv Contents

3.7 Self-awareness in Robotics . 29
3.8 Self-awareness in Autonomic Systems . 30
3.9 Self-awareness in Organic Computing . 32
3.10 Self-expression in Computing . 33
3.11 Summary . 34

4 Reference Architecture for Self-aware and Self-expressive

Computing Systems . 37
Arjun Chandra, Peter R. Lewis, Kyrre Glette, and Stephan C. Stilkerich
4.1 Introduction . 37
4.2 Architectures for Designing Self-adaptive Systems 38
4.3 Generic Reference Architecture for Designing Self-aware and

Self-expressive Computing Systems . 42
4.3.1 Reference Architecture for Agents 43
4.3.2 Architecting Collectives . 47

4.4 Reference Architecture in Practice . 49

Part II Patterns and Techniques

5 Design Patterns and Primitives: Introduction of Components and

Patterns for SACS . 53
Tao Chen, Funmilade Faniyi, and Rami Bahsoon
5.1 Introduction and Motivation . 53
5.2 Patterns for Self-aware Architecture Style . 54

5.2.1 Basic Notations . 54
5.2.2 The Self-aware Patterns . 56

5.3 Architectural Primitives and Attributes for Self-aware Systems . . . 70
5.3.1 Taxonomy of Primitives . 71
5.3.2 List of Architectural Primitives and Attributes 71

5.4 Discussion . 73
5.4.1 Phase 1: Collect Requirements and Constraints 73
5.4.2 Phase 2: Propose Candidate Architecture 74
5.4.3 Phase 3: Select the Best Pattern(s) . 74
5.4.4 Phase 4: Fit the Selected Pattern(s) 75
5.4.5 Step 5: Determine the Important Primitives and the

Possible Alternatives for Non-functional Requirements . . 75
5.4.6 Step 6: Create Scenarios . 76
5.4.7 Step 7: Score the Alternative of Primitives Against

Each Non-functional Attribute Using Analytical or
Simulation Models . 76

5.4.8 Step 8: Find the Best Alternatives for the Final
Architecture View . 78

5.5 Conclusion . 78

Contents xv

6 Knowledge Representation and Modelling: Structures and

Trade-Offs . 79
Leandro L. Minku, Lukas Esterle, Georg Nebehay, and Renzhi Chen
6.1 Introduction . 80
6.2 Adaptivity . 80

6.2.1 Definition and Examples . 81
6.2.2 Implications . 83

6.3 Robustness . 89
6.3.1 Definitions and Examples . 89
6.3.2 Implications . 92

6.4 Multi-objectivity . 96
6.4.1 Definition and Examples . 96
6.4.2 Implications . 99

6.5 Decentralisation . 104
6.5.1 Definitions and Examples . 105
6.5.2 Implications . 108

6.6 Summary . 111

7 Common Techniques for Self-awareness and Self-expression 113
Shuo Wang, Georg Nebehay, Lukas Esterle, Kristian Nymoen, and
Leandro L. Minku
7.1 Introduction . 114
7.2 Online Learning . 114

7.2.1 Example Application . 115
7.2.2 Benefits and Challenges at Levels of Self-awareness 119
7.2.3 Other Related Techniques . 120

7.3 Nature-Inspired Learning . 125
7.3.1 Example Application . 125
7.3.2 Benefits and Challenges at Levels of Self-awareness 130
7.3.3 Other Related Techniques . 132

7.4 Socially-Inspired Learning in Collective Systems 133
7.4.1 Example Application . 134
7.4.2 Benefits and Challenges at Levels of Self-awareness 139
7.4.3 Other Related Techniques . 141

Part III Nodes and Networks

8 Self-aware Compute Nodes . 145
Andreas Agne, Markus Happe, Achim Lösch, Christian Plessl, and
Marco Platzner
8.1 Heterogeneous Multi-cores . 146
8.2 Related Work on Self-aware Compute Nodes 147
8.3 Reference Architecture for Self-aware Compute Nodes 150
8.4 ReconOS . 151

8.4.1 Architecture and Programming . 152
8.4.2 Partial Reconfiguration . 153

xvi Contents

8.4.3 Sensors and Actuators . 154
8.4.4 Availability of ReconOS . 156

8.5 Case Study for a Self-aware Heterogeneous Multi-core 156
8.5.1 Self-expression Under Performance Constraints 158
8.5.2 Self-expression Under Conflicting Constraints 162
8.5.3 Comparison of Self-expression Strategies 163

8.6 Discussion and Conclusion . 165

9 Self-adaptive Hardware Acceleration on a Heterogeneous Cluster . . 167
Xinyu Niu, Tim Todman, and Wayne Luk
9.1 Overview of Heterogeneous Computing . 168

9.1.1 Heterogeneous Clusters: Performance 168
9.1.2 Heterogeneous Clusters: Verification 172

9.2 Architectures of Heterogeneous Clusters . 173
9.2.1 Overview of Existing Heterogeneous Clusters 173
9.2.2 Software Layers in Heterogeneous Clusters 174

9.3 Self-aware and Self-adaptive Applications for Heterogeneous
Clusters . 177
9.3.1 Self-awareness in Heterogeneous Clusters 177
9.3.2 Runtime Scenarios . 178
9.3.3 Monitoring . 179
9.3.4 Adaptive Strategies in Heterogeneous Clusters 182
9.3.5 Computational Capacity . 182
9.3.6 Workload Distribution . 183
9.3.7 Communication Scheduling . 183

9.4 Evaluation Results . 184
9.4.1 Benchmark Applications . 184
9.4.2 Self-adaptive Temperature Control 186
9.4.3 Self-adaptivity for Resource Availability Variations 186

9.5 Verification of Heterogeneous Clusters . 188
9.5.1 Verification of Hardware-Software Codesign 189
9.5.2 Runtime Verification by In-Circuit Statistical Assertions . 191
9.5.3 Results . 192

9.6 Summary . 192

10 Flexible Protocol Stacks . 193
Markus Happe and Ariane Trammell-Keller
10.1 Introduction . 194
10.2 Concepts and Methodologies . 194

10.2.1 Self-aware/expressive Network Node Architecture 197
10.2.2 Protocol Stack Negotiation and Adaptations 198
10.2.3 Dynamic Hardware/Software Mapping 199

10.3 EmbedNet Execution Environment . 200
10.4 Case Studies . 202

10.4.1 Sensor Network . 203
10.4.2 Smart Camera Network . 204

Contents xvii

10.5 Comparison to Related Research Projects . 211
10.6 Conclusion . 213

11 Middleware Support for Self-aware Computing Systems 215
Jennifer Simonjan, Bernhard Dieber, and Bernhard Rinner
11.1 Introduction to Middleware Systems . 216

11.1.1 Middleware Basics . 216
11.1.2 Application Example of a Distributed Self-aware

Computing System . 217
11.2 Middleware Requirements . 219
11.3 Middleware Paradigms . 221

11.3.1 Host-Centric Middleware . 222
11.3.2 Content-Centric Middleware . 225
11.3.3 Requirements Conformity of Middleware Paradigms 227

11.4 Publish/Subscribe . 228
11.4.1 Publish/Subscribe Flavours . 230
11.4.2 Decoupling . 231
11.4.3 Publish/Subscribe for SACS . 231

11.5 Ella: A Publish/Subscribe-Based Hybrid Middleware 232
11.5.1 Architecture . 232
11.5.2 SACS-Specific Features in Ella . 235
11.5.3 Ella in Practice . 236

11.6 Conclusion . 237

Part IV Applications and Case Studies

12 Self-aware Hardware Acceleration of Financial Applications on a

Heterogeneous Cluster . 241
Maciej Kurek, Tobias Becker, Ce Guo, Stewart Denholm,
Andreea-Ingrid Funie, Mark Salmon, Tim Todman, and Wayne Luk
12.1 Introduction . 242

12.1.1 Overview of Techniques and Tools 242
12.2 Rule-Based Algorithmic Trading . 243
12.3 Model-Based Algorithmic Trading . 245
12.4 Market Data Feed Arbitration . 245
12.5 In Detail: ARDEGO — Machine Learning-Based Optimisation

of Reconfigurable Systems . 246
12.5.1 Background . 247
12.5.2 ARDEGO Approach . 251
12.5.3 Acceleration of ARDEGO . 255
12.5.4 Evaluation . 256

12.6 Conclusion . 260

xviii Contents

13 Self-aware Object Tracking in Multi-Camera Networks 261
Lukas Esterle, Jennifer Simonjan, Georg Nebehay, Roman Pflugfelder,
Gustavo Fernández Domı́nguez, and Bernhard Rinner
13.1 Smart Camera Networks . 262
13.2 Object Tracking . 263
13.3 Multi-camera Tracking Coordination . 264
13.4 Self-aware and Self-expressive Building Blocks 265

13.4.1 Object Tracking . 266
13.4.2 Object Handover . 267
13.4.3 Topology Learning . 269
13.4.4 Strategy Selection . 269
13.4.5 Resource Monitoring . 270
13.4.6 Constraints and Objectives . 270

13.5 Camera Network Case Study . 271
13.5.1 Camera Network Setup . 271
13.5.2 Tracking Results . 272
13.5.3 Topology Learning . 274
13.5.4 Communication and Utility Trade-off 274

13.6 Conclusion and Outlook . 275

14 Self-awareness in Active Music Systems . 279
Kristian Nymoen, Arjun Chandra, and
14.1 Introduction . 279
14.2 Decentralised Circulation of Musical Control 281

14.2.1 SoloJam Algorithmic Details . 282
14.2.2 SoloJam Implementation . 284

14.3 Adaptive Mapping in Active Music Systems 286
14.3.1 Gesture Recognition in Active Music Systems 288
14.3.2 Pheromone-Inspired Gait Recognition 288
14.3.3 Music Synthesis in Funky Sole Music 290
14.3.4 Adaptive Mapping . 290

14.4 Pheromone Trails in a Musical Space . 292
14.4.1 Flexible Musical Scenes . 292
14.4.2 Pheromone Mechanism . 294

14.5 Conclusion . 296

15 Conclusions and Outlook . 297
Peter R. Lewis, Marco Platzner, Bernhard Rinner,
Xin Yao
15.1 Computational Self-awareness . 298
15.2 Challenges and Research Questions . 299

References . 301

Index . 323

Jim T rresenø

Jim T rresen, andø

List of Contributors

Andreas Agne
Paderborn University, Germany. e-mail: agne@upb.de

Rami Bahsoon
University of Birmingham, UK. e-mail: r.bahsoon@cs.bham.ac.uk

Tobias Becker
Imperial College London, UK. e-mail: tobias.becker@imperial.ac.uk

Arjun Chandra
Studix, Norway. e-mail: arjun@studix.com

Renzhi Chen
University of Birmingham, UK. e-mail: rxc332@cs.bham.ac.uk

Tao Chen
University of Birmingham, UK. e-mail: t.chen@cs.bham.ac.uk

Stewart Denholm
Imperial College London, UK. e-mail: stewart.denholm10@imperial.ac.uk

Bernhard Dieber
Alpen-Adria-Universität Klagenfurt, Austria. e-mail: bernhard.dieber@counity.at

Lukas Esterle
Alpen-Adria-Universität Klagenfurt, Austria. e-mail: lukas.esterle@aau.at

Gustavo Fernández Domı́nguez
Austrian Institute of Technology, Austria. e-mail: gustavo.fernandez@ait.ac.at

Funmilade Faniyi
University of Birmingham, UK. e-mail: f.faniyi@gmail.com

Andreea-Ingrid Funie
Imperial College London, UK. e-mail: andreea.funie09@imperial.ac.uk

xix

mailto:agne@upb.de
mailto:r.bahsoon@cs.bham.ac.uk
mailto:tobias.becker@imperial.ac.uk
mailto:arjun@studix.com
mailto:rxc332@cs.bham.ac.uk
mailto:t.chen@cs.bham.ac.uk
mailto:stewart.denholm10@imperial.ac.uk
mailto:bernhard.dieber@counity.at
mailto:lukas.esterle@aau.at
mailto:gustavo.fernandez@ait.ac.at
mailto:f.faniyi@gmail.com
mailto:andreea.funie09@imperial.ac.uk

xx List of Contributors

Kyrre Glette
University of Oslo, Norway. e-mail: kyrrehg@ifi.uio.no

Ce Guo
Imperial College London, UK. e-mail: ce.guo10@imperial.ac.uk

Markus Happe
ETH Zurich, Switzerland. e-mail: markus.happe@alumni.ethz.ch

Maciej Kurek
Imperial College London, UK. e-mail: mk306@imperial.ac.uk

Peter R. Lewis
Aston University, UK. e-mail: p.lewis@aston.ac.uk

Achim Loesch
Paderborn University, Germany, e-mail: achim.loesch@upb.de

Wayne Luk
Imperial College London, UK. e-mail: w.luk@imperial.ac.uk

Leandro L. Minku
University of Leicester, UK. e-mail: leandro.minku@leicester.ac.uk

Georg Nebehay
Austrian Institute of Technology, Austria. e-mail: gnebehay@gmail.com

Kristian Nymoen
University of Oslo, Norway. e-mail: kristian.nymoen@imv.uio.no

Roman Pflugfelder
Austrian Institute of Technology, Austria. e-mail: roman.pflugfelder@ait.ac.at

Marco Platzner
Paderborn University, Germany. e-mail: platzner@upb.de

Christian Plessl
Paderborn University, Germany. e-mail: christian.plessl@uni-paderborn.de

Bernhard Rinner
Alpen-Adria-Universität Klagenfurt, Austria. e-mail: bernhard.rinner@aau.at

Mark Salmon
University of Cambridge, UK. e-mail: mhs39@cam.ac.uk

Jennifer Simonjan
Alpen-Adria-Universität Klagenfurt, Austria. e-mail: jennifer.simonjan@aau.at

Stephan C. Stilkerich
Airbus Group Innovation, Germany. e-mail: stephan.stilkerich@airbus.com

Xinyu Niu
Imperial College London, UK. e-mail: niu.xinyu10@imperial.ac.uk

mailto:kyrrehg@ifi.uio.no
mailto:ce.guo10@imperial.ac.uk
mailto:markus.happe@alumni.ethz.ch
mailto:mk306@imperial.ac.uk
mailto:p.lewis@aston.ac.uk
mailto:achim.loesch@upb.de
mailto:w.luk@imperial.ac.uk
mailto:leandro.minku@leicester.ac.uk
mailto:gnebehay@gmail.com
mailto:niu.xinyu10@imperial.ac.uk
mailto:kristian.nymoen@imv.uio.no
mailto:roman.pflugfelder@ait.ac.at
mailto:platzner@upb.de
mailto:christian.plessl@uni-paderborn.de
mailto:bernhard.rinner@aau.at
mailto:mhs39@cam.ac.uk
mailto:jennifer.simonjan@aau.at
mailto:stephan.stilkerich@airbus.com

List of Contributors xxi

University of Oslo, Norway. e-mail: jimtoer@ifi.uio.no

Ariane Trammell-Keller
ETH Zurich, Switzerland. e-mail: ariane.trammell@alumni.ethz.ch

Shuo Wang
University of Birmingham, UK. e-mail: s.wang@cs.bham.ac.uk

Xin Yao
University of Birmingham, UK. e-mail: x.yao@cs.bham.ac.uk

Tim Todman
Imperial College London, UK. e-mail: timothy.todman@imperial.ac.uk

Jim Tørresen

mailto:timothy.todman@imperial.ac.uk
mailto:jimtoer@ifi.uio.no
mailto:ariane.trammell@alumni.ethz.ch
mailto:s.wang@cs.bham.ac.uk
mailto:x.yao@cs.bham.ac.uk

Acronyms

ACO Ant Colony Optimisation
AES Advanced Encryption Standard
ALA Ant Learning Algorithm
API Application Programming Interface
BSD Berkeley Software Distribution
CDC Concept Drift Committee
CDT Correct Detected Track
CMT Consensus-Based Matching and Tracking
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
CV Computer Vision
DDD Diversity for Dealing with Drifts
DDM Drift Detection Method
DPS Dynamic Protocol Stack
DWM Dynamic Weight Majority
EA Evolutionary Algorithm
EDDM Early Drift Detection Method
EGO Efficient Global Optimisation
FAT False Alarm Track
FB Functional Block
FF Flip-Flop
FPGA Field-Programmable Gate Array
FPS Frames per Second
FMC FPGA Mezzanine Card
FOV Field of View
FSR Force-Sensitive Resistor
GA Genetic Algorithm
GPSP General Purpose Sensor Platform
GP Gaussian Process
GPU Graphics Processing Unit
H2S Hardware-to-Software

xxiii

xxiv Acronyms

HLS High Level Synthesis
HMM Hidden Markov Models
HPC High Performance Computing
ICAP Internal Configuration Access Port
IDP Information Dispatch Point
ILP Integer Linear Programming
IP Internet Protocol
IPC Inter-process Communication
LUT Look-up Table
MAC Media Access Protocol
MLO Machine Learning Optimiser
MOEA/D Multi-objective Evolutionary Algorithm Based on Decomposition
MOP Multi-objective Optimisation Problem
MPI Message Passing Interface
MTBF Mean Time Between Failures
NoC Network-on-Chip
OSC Open Sound Control
OT Object Tracking
PE Processing Element
RAP Redundancy Allocation Problem
RAM Random Access Memory
RTM Reverse Time Migration
S2H Software-to-Hardware
SA Self-aware
SACS Self-aware Computing Systems
SDRAM Synchronous Dynamic Random Access Memory
SE Self-expression
SIMD Single Instruction, Multiple Data
SMT Satisfiability Modulo Theories
SVM Support Vector Machine
SoC System-on-Chip
SOP Single-Objective Optimisation Problem
SSE Streaming SIMD Extensions
STEPD Statistical Test of Equal Proportions
TCP Transmission Control Protocol
TDF Track Detection Failure
TPOT-RL Team-Partitioned Opaque-Transition Reinforcement Learning
Todi Two Online Classifiers for Learning and Detecting Concept Drift
TLD Tracking-Learning-Detection
UDP User Datagram Protocol
VHDL Very High Speed Integrated Circuit Hardware Description Language

Glossary

This glossary lists important terms used in this book, in particular in Part I “Con-
cepts and Fundamentals”, with accompanying descriptions or definitions. The glos-
sary is organised into four sections: concepts of self-awareness and self-expression,
engineering self-aware systems, related approaches, and general terms. The terms
in each of the sections are listed alphabetically.

Concepts of Self-awareness and Self-expression

self-awareness Self-awareness is a broad concept which describes the property of a
system (typically a human) which has knowledge of “itself”, based on its own senses
(perceptual) and internal models (conceptual). This knowledge may take different
forms (cf. levels of self-awareness), and be based on perceptions of both internal
and external phenomena (cf. public vs. private self-awareness). It can be a property
of single systems (e.g., agents) and collective systems.

collective self-awareness Collective self-awareness refers to the self-awareness
property of a collective system, i.e., as opposed to a single agent. Levels of, and
public/private self-awareness apply also at this abstraction. This means that a self-
aware system is not required to have a central “knowledge” component (though it
may have, if desired).

computational self-awareness Computational self-awareness is a notion we have
developed to refer to a computational interpretation of self-awareness. Since much
of the literature on self-awareness does not readily make sense to engineers or ap-
plies directly to technical systems, aspects of computational self-awareness are de-
signed to describe self-awareness properties of computational systems, inspired by
self-awareness in humans.

emergent self-awareness This is a special case of collective self-awareness, when
the collective self-awareness properties are present, but it is not obvious how this
comes about by simply examining the behaviour of individual nodes within a col-
lective.

xxv

xxvi Glossary

level(s) of self-awareness A very common theme in self-awareness theory is the
distinction between several levels of self-awareness, to describe different aspects
or capabilities which comprise a system’s complex self-awareness. There are many
examples of “sets of levels” to be found in the literature. In developing our notion
of computational self-awareness, we have based a set of levels of computational
self-awareness on the set of levels (for humans) proposed by Ulric Neisser. Note
that our levels are not hierarchical, do not build on each other, nor are they in any
particular order, save that the ecological self/stimulus awareness is the most basic,
and the conceptual self/meta-self-awareness is typically the most complex.

meta-self-awareness Meta-self-awareness is one of the levels of computational
self-awareness we propose, indeed the highest one in our framework. It refers to
the capability of a system to be aware of its own self-awareness. This can be very
useful, since it means a system has knowledge, obtained at run time, about its own
self-awareness processes, including, for example, how effective its learning is at
present, or how much resource is being spent to maintain its knowledge. Meta-self-
awareness is closely related to, and permits, meta-reasoning. It is a concept inspired
directly from human psychology.

private self-awareness Private self-awareness refers to a system’s ability to obtain
knowledge based on phenomena that are internal to itself. A system needs internal
sensors to achieve this. Again, this is a notion which exists in human self-awareness
theory, and also features in computational self-awareness.

public self-awareness Public self-awareness refers to a system’s ability to obtain
knowledge based on phenomena external to itself. Such knowledge depends on how
the system itself senses/observes/measures aspects of the environment it is situated
in, and includes knowledge of its situation and context, as well as (potential) im-
pact and role within its environment. This is a notion which exists in human self-
awareness theory, and also features in computational self-awareness.

scope of self-awareness The scope of self-awareness refers to the domain of phe-
nomena able to be sensed and modelled by the self in question. For a system which
is only privately self-aware, the scope may be the same as the span (i.e., it has no
perception of its environment). For a system which has some private and some pub-
lic self-awareness, the scope would be larger than the span, and include external
social or physical aspects of the environment. The term scope can be useful to avoid
having to use the word “level” to mean multiple things simultaneously in a passage
of text.

self-aware system We do not formally define this in the book, however we gener-
ally consider a self-aware system to be one which (at least) obtains and maintains
knowledge relating to itself (including its perspective of its environment), without
external control.

self-awareness capability When a particular level of self-awareness is present in
a system, we refer to this as the system having that particular self-awareness capa-
bility. For example, a node may have a time-awareness capability, indicating that

Glossary xxvii

it implements the time-awareness level. Levels may be realised in different ways
simultaneously in the same system, meaning that, for example, a system may have
several time-awareness capabilities.

self-explanation Another form of self-expression when based on self-awareness,
self-explanation is the ability of a system to explain/justify its behaviour to an entity
on the outside (such as a user or another system).

self-expression Self-expression is, in the general sense, behaviour based on self-
awareness. It may include a wide range of different actions, enacted through a sys-
tem’s actuators, including self-adaptation, self-explanation, or just normal system
behaviour. Self-expression can also be considered as a property of a collective, since
a collective’s behaviour can also be based on collective self-awareness. Examples
of this might include the adaptive behaviour of a flock of birds in response to an
external (to the flock) stimulus.

self-expression capability As with self-awareness capabilities, self-expression ca-
pabilities refer to the presence of an implementation of self-expression in a system.
For example, a system which adapts its parameters in response to its goal-awareness,
would have a self-expression capability. Again, multiple self-expression capabilities
may be present simultaneously.

self-knowledge Self-knowledge is a general term for knowledge (usually held in
a learnt model) concerning the system itself, which typically is produced as part
of a self-awareness process. Note that this can include objective self-knowledge
(i.e., about the system as an object in the world, how it interacts with others, how
its internal state changes, etc.) and also subjective self-knowledge (i.e., about its
experiences, sensor data, changing context, etc.).

self-optimisation Self-optimisation is a form of self-expression; self-optimisation
is the ability of a system to optimise itself by improving metrics such as performance
or power consumption.

span of self-awareness We use this term to refer to the domain of the subject of
the self-awareness, i.e., it is the answer to the question: who is the self here? For
example, if a single agent is self-aware, then the span is the agent. If we are con-
sidering the collective self-awareness of a network of smart sensors, then the span
would be the network. The term span can be useful to avoid having to use the word
“level” to mean multiple things simultaneously in a passage of text.

Engineering Self-aware Systems

(architectural) pattern We produced eight architectural patterns, which are de-
rived from the reference architecture and describe how various capabilities (such
as levels of self-awareness, etc.) can be included or excluded as appropriate to the
application need.

xxviii Glossary

methodology for engineering self-aware systems We developed a methodology
for engineering self-aware systems, based on the reference architecture and the de-
rived architectural patterns.

primitive A primitive is a particular block in the reference architecture, represent-
ing, for example, a level of self-awareness, self-expression and a sensor. They are
instantiated for particular applications.

reference architecture We developed a reference architecture which captures the
core aspects of computational self-awareness. The aim is to provide a common, prin-
cipled basis on which researchers and practitioners can structure their work. We have
argued that the psychological foundations, while not strictly necessary, can provide
a means of channelling a wide range of ideas, which would perhaps otherwise not
have occurred to engineers, acting to inspire the design of future computing sys-
tems. The architecture can also be used as a template for identifying common ways
of implementing self-awareness capabilities. Different implementations of the same
capability can thereby be compared and evaluated. Further, we have derived a set of
architectural patterns from the reference architecture.

(self-aware) node We use the term self-aware node to refer to various types of sys-
tem that are self-aware, e.g., an agent, a robot and a camera. Agent is an alternative
term, but node can be used when not wanting to be specific about a particular sys-
tem being an agent. We also claim that self-aware collectives (see next entry) can be
viewed as self-aware nodes, at a higher level of abstraction. A node may or may not
correspond to a physical system—this is not a requirement, but it may often make
sense to make it correspond.

tactic/algorithm/technique A tactic is a particular instantiation of a primitive in
the reference architecture, typically referred to as a particular algorithm, technique,
etc. These are application specific. Multiple tactics may be suitable for a particular
primitive, and some tactics may implement multiple primitives simultaneously.

Related Approaches

autonomic (computing) Autonomic computing is a vision originally pioneered
by IBM, of engineered systems which manage themselves. This self-management
is stated to include: self-configuration, self-optimisation, self-healing and self-
protection. The aim is to reduce the need for human involvement in the management
of complex computing systems. Some autonomic computing literature mentions the
need for self-awareness as a characteristic to support self-management, though the
literature on autonomic computing does not significantly expand on this. (Not to be
confused with autonomous.)

autonomous (system) Autonomy is a broad notion with much disagreement sur-
rounding it. However, in general, an autonomous system is one which acts without
any external direction. Examples include robots, vehicles and software agents. In
many cases, this ability to make decisions is based on a method of decision making
pre-programmed into the system, in other cases it is learnt online at run time. The

Glossary xxxix

types of systems we are concerned with in this book are ones which would typically
be considered to be autonomous to a greater or lesser extent. (Not to be confused
with autonomic.)

metacognition/metareasoning Metareasoning is reasoning about reasoning, and
has been the topic of a significant amount of research primarily in the US, where
it has been primarily led by DARPA. Metareasoning relies on meta-self-awareness,
and again the metareasoning community has discussed self-awareness as being im-
portant, but not expanded on the notion significantly.

organic computing This is a vision from a long-running (primarily) German re-
search project to create “life-like” engineered systems, in which self-organising
emergent behaviour is controlled (by an observer/controller component), to ensure
desirability in the self-organisation. The Organic Computing literature also men-
tioned self-awareness as beneficial, but again does not expand on this significantly.

General Terms

adaptability In high level terms, this is similar to adaptivity, but describes a sys-
tem’s potential for adaptation, rather than actual realised adaptivity.

adaptivity In high level terms, this concerns the amount to which a system adapts,
e.g., in the presence of a changing environment, or as a result of its learning.

collective We use the term collective to refer to various types of distributed sys-
tems, typically without central control. Examples include swarms, systems-of-
systems, populations, multi-agent systems, interwoven systems, etc. The term can
be used when there is a need to talk generally of these types of systems, without
restricting the discussion to a specific one.

learnt model A learnt model is a model which has been induced through a process
of (typically online) learning, based on data from sensors and other existing models.
Learnt models hold the conceptual knowledge a self-aware system has concerning
itself, its interactions, history, expectations, goals, etc.

model We use the term model in a very general way, to refer to a conceptual rep-
resentation of some knowledge, typically obtained through sensors. A model could
simply be a direct representation of some data, or could be abstractions of that data,
or further data synthesised from sensory input.

online learning Online learning is the process of learning a model from data on
an ongoing basis. Typically, not all data is available in advance (e.g., it arrives in
a streaming fashion from sensors), and the concept being learnt may change over

self-adaptive system A system which adapts (typically its behaviour) in response
to external or internal changes, but without external control. We have argued that

time (i.e., concept drift). In online learning, models are often used (e.g., through
self-expression in this case) before learning “completes”, if indeed it ever does.
Hence most online learning algorithms also need to be anytime algorithms, implying
that models are used and improved continuously as time goes by.

xxx Glossary

self-awareness is an enabling property for effective self-adaptation. When self-
adaptation behaviour is based on self-awareness, it is a form of self-expression.

self-organising system A system which changes its organisation (e.g., its structure,
architecture, topology), without external control.

	Foreword
	Preface
	Acknowledgements
	Contents
	List of Contributors
	Acronyms
	Glossary

