Skip to main content

Piezoelectric Energy Harvesting on Running Shoes

  • Conference paper
  • First Online:
Mobile Networks for Biometric Data Analysis

Abstract

One of the strong requirements of wireless sensor networks is the low power consumption in order to extend the life of the network itself. This constraint is even stronger for body area networks. Energy harvesting is an interesting solution that captures the energy from the environment. This work presents an electromechanical model of a piezoelectric transducer in a cantilever configuration. The model has been used to design and optimize an energy harvesting system, that has been placed on a running shoe, that can be used to feed energy for sensors of body area networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramesh MV (2014) Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Netw 13(Part A):2–18. doi:10.1016/j.adhoc.2012.09.002

    Google Scholar 

  2. Shen X, Bo C, Zhang J, Tang S, Mao X, Dai G (2013) EFCon: energy flow control for sustainable wireless sensor networks. Ad Hoc Netw 11(4):1421–1431. doi:10.1016/j.adhoc.2011.07.003

    Article  Google Scholar 

  3. Severini M, Squartini S, Piazza F, Conti M (2015) Energy-aware task scheduler for self-powered sensor nodes: from model to firmware. Ad Hoc Netw 24(Part A):73–91. doi:10.1016/j.adhoc.2014.06.009

    Google Scholar 

  4. Paulo J, Gaspar PD (2010) Review and future trend of energy harvesting methods for portable medical devices. In: Proceedings of the world congress on engineering 2010, vol II, WCE 2010. London, June 30–July 2, 2010

    Google Scholar 

  5. Caliò R, Rongala UB, Camboni D, Milazzo M, Stefanini C, de Petris G, Oddo CM (2014) Piezoelectric energy harvesting solutions. Sensors 14:4755–4790. doi:10.3390/s140304755

    Google Scholar 

  6. d’Aparo R, Orcioni S, Conti M (2009) A digital controlled energy scavenger power converter. In: 2009 seventh workshop on intelligent solutions in embedded systems, pp 165–170

    Google Scholar 

  7. d’Aparo R, Orcioni S, Conti M (2011) A sigma-delta controlled power converter for energy harvesting applications. In: Conti M, Orcioni S, Martinez Madrid N, Seepold ER (eds) Solutions on embedded systems. Springer, Dordrecht, Netherlands, pp 257–270

    Google Scholar 

  8. Hande A, Bridgelall R, Zoghi e B (2010) Vibration energy harvesting for disaster asset monitoring using active RFID tags. In: Proceedings of the IEEE 98.9 (2010), pp 1620–1628

    Google Scholar 

  9. Lee S, Youn B (2011) A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin. IEEE Trans Ultrason Ferroelectr Freq Control 58(3):629–645

    Article  Google Scholar 

  10. Almouahed S et al (2010) Self-powered instrumented knee implant for early detection of postoperative complications. In: 2010 annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 5121–5124

    Google Scholar 

  11. Paradiso J (2006) Systems for human-powered mobile computing. In: 2006 43rd ACM/IEEE design automation conference, pp 645–650

    Google Scholar 

  12. Rocha J, Goncalves L, Rocha P, Silva M, Lanceros-Mendez S (2010) Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Trans Ind Electron 57(3):813–819

    Article  Google Scholar 

  13. Wu TT, Yao WS, Wang SH, Tsai MC (2010) Analysis of high efficiency piezoelectric floor on intelligent buildings. In: Proceedings of SICE annual conference 2010, Taipei, pp 1777–1780

    Google Scholar 

  14. Ishida K, Huang TC, Honda K, Shinozuka Y, Fuketa H, Yokota T, Zschieschang U, Klauk H, Tortissier G, Sekitani T, Toshiyoshi H, Takamiya M, Someya T, Sakurai T (2013) Insole pedometer with piezoelectric energy harvester and 2 V organic circuits. IEEE J Solid-State Circuits 48(1):255–264

    Google Scholar 

  15. Wendt JB, Goudar V, Noshadi H, Potkonjak M (2012) Spatiotemporal assignment of energy harvesters on a self-sustaining medical shoe. IEEE Int J Sens 1–4

    Google Scholar 

  16. Shen JX, Wang CF, Luk PCK, Miao DM, Shi D, Xu C (2013) A shoe-equipped linear generator for energy harvesting. IEEE Trans Ind Appl 49(2):990–996

    Google Scholar 

  17. Gatto A, Frontoni E (2014) Energy harvesting system for smart shoes. In: 2014 IEEE/ASME 10th international conference on mechatronic and embedded systems and applications (MESA), pp 1–6

    Google Scholar 

  18. Meier R, Kelly N, Almog O, Chiang P (2014) A piezoelectric energy-harvesting shoe system for podiatric sensing. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 622–625

    Google Scholar 

  19. Saha P, Goswami S, Chakrabarty S, Sarkar S (2014) Simulation and model verification of shoe embedded piezoelectric energy harvester. In: 2014 6th IEEE power india international conference (PIICON), pp 1–6

    Google Scholar 

  20. Fan T, Yamamoto Y (2015) Vibration-induced energy harvesting system using Terfenol-D. In: 2015 IEEE international conference on mechatronics and automation (ICMA), pp 2319–2324

    Google Scholar 

  21. Paul PJ, Tutu RSD, Richards WK, Jerome VM (2015) Project power shoe: piezoelectric wireless power transfer. A mobile charging technique. In: 2015 IEEE global humanitarian technology conference (GHTC), pp 334–339

    Google Scholar 

  22. Zhao Jingjing, You Zheng (2014) A Shoe-embedded piezoelectric energy harvester for wearable sensors. Int J Sens 14:12497–12510. doi:10.3390/s140712497

    Article  MathSciNet  Google Scholar 

  23. Mide Volture Datasheet, web site: http://www.mide.com/products/volture/v22bl.php

  24. Physik Instrumente DuraAct Patch Transducer P-876 Datasheet, web site: http://www.physikinstrumente.com/en/pdf/P876_Datasheet.pdf

  25. Romani A, Sangiorgi E, Tartagni M, Paganelli RP (2013) Joint modeling of piezoelectric transducers and power conversion circuits for energy harvesting applications. IEEE Sensors J 13(3):916–925

    Google Scholar 

  26. Camilloni E, Carloni M, Giammarini M, Conti M (2013) Energy harvesting with piezoelectric applied on shoes. In: Proceedings of SPIE 2013 microtechnologies, international conference VLSI circuits and systems, vol 8764. Grenoble, France, paper 4, pp 05.1–05.12, 24–26 Apr 2013

    Google Scholar 

  27. Camilloni E, Demaso-Gentile G, Scavongelli C, Conti M (2014) Energy harvesting for body area networks. In: Proceedings of the international workshop “mobile networks for biometric data analysis” mBiDA, Ancona, Italy, pp 113–126, 30–31 Oct 2014

    Google Scholar 

  28. LTC3588 Datasheet, web site: http://www.linear.com

  29. Power Consumption Analysis of Bluetooth Low Energy, ZigBee and ANT Sensor Nodes in a Cyclic Sleep Scenario, A Dementyev, S Hodges, S Taylor, J Smith - Wireless Symposium (IWS), 2013 IEEE International, 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Conti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Camilloni, E., DeMaso-Gentile, G., Scavongelli, C., Orcioni, S., Conti, M. (2016). Piezoelectric Energy Harvesting on Running Shoes. In: Conti, M., Martínez Madrid, N., Seepold, R., Orcioni, S. (eds) Mobile Networks for Biometric Data Analysis. Lecture Notes in Electrical Engineering, vol 392. Springer, Cham. https://doi.org/10.1007/978-3-319-39700-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39700-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39698-9

  • Online ISBN: 978-3-319-39700-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics