Skip to main content

The Fast Matching Algorithm for Rectified Stereo Images

  • Conference paper
  • First Online:
Information Technologies in Medicine (ITiB 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 471))

Included in the following conference series:

Abstract

In their research, the authors focus on the rapid methods for matching rectified images which can be readily implemented on mobile devices. First, the new method for matching images performs binarization of images and transforms them so that they depict edges. The disparity map is created in accordance with the principle that the correct disparity is the minimum distance of the calculated distances between a point in the left image and all the points in the right image in a given row. The method is illustrated on the basis of the authors’ own images as well as standard images from the Middlebury library. In addition, the method has been compared with well recognized and commonly used algorithms for matching images, namely variational and semi-global methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. 2006 Stereo datasets with ground truth. http://vision.middlebury.edu/stereo/data/scenes2006/

  2. Bouguet, J.-Y.: Complete Camera Calibration Toolbox for Matlab (1999). http://www.vision.caltech.edu/bouguetj/

  3. Brown, D.C.: Close-range camera calibration. Photogram. Eng. Remote Sens. 37, 855–866 (1971)

    Google Scholar 

  4. D’Apuzzo, N.: Automated photogrammetric measurement of human faces. Int. Arch. Photogramm. Remote Sens. 32(B5), 402–407 (1998)

    Google Scholar 

  5. D’Apuzzo, N.: Measurement and modeling of human faces from multi images. Int. Arch. Photogramm. Remote Sens. 34(5), 241–246 (2002)

    Google Scholar 

  6. Fryer, J.G., Brown, D.C.: Lens distortion for close-range photogrammetry. Photogramm. Eng. Rem. S. 52, 51–58 (1986)

    Google Scholar 

  7. Golec, J., Ziemka, A., Szczygiel, E., Czechowska, D., Milert, A., Kreska-Korus, A., Golec, E.: Photogrametrical analysis body position in hips osteoarthrosis. Ostry Dyzur. 5, 1–7 (2012)

    Google Scholar 

  8. Golec, J., Tomaszewski, K., Maslon, A., Szczygiel, E., Hladki, W., Golec, E.: The assessment of gait symmetry disorders and chosen body posture parameters among patients with polyarticular osteoarthritis. Ostry Dyzur. 6, 91–95 (2013)

    Google Scholar 

  9. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2003)

    Google Scholar 

  10. Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: Proceedings of IEEE Computer Society, Conference on Computer Vision and Pattern Recognition. pp. 1106–1112. IEEE Computer Society (1997)

    Google Scholar 

  11. Hirschműller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341 (2008)

    Article  Google Scholar 

  12. Kraus, K.: Photogrammetry: Geometry from Images and Laser Scans. Walter de Gruyter (2007)

    Google Scholar 

  13. Mitchell, H.L.: Applications of digital photogrammetry to medical investigations. ISPRS J. Photogramm. Remote Sens. 50, 27–36 (1995)

    Article  Google Scholar 

  14. Mitchell, H.L., Newton, I.: Medical photogrammetric measurement: overview and prospects. ISPRS J. Photogramm. Remote Sens. 56, 286–294 (2002)

    Article  Google Scholar 

  15. Otsu, N.: Threshold selection method from grey-level histograms. IEEE Trans. Syst. Man Cybern. SMC-9, 62–66 (1979)

    Google Scholar 

  16. Patias, P.: Medical imaging challenges photogrammetry. Virtual Prototyp. Bio Manuf. Med. Appl. 56, 45–66 (2008)

    Article  Google Scholar 

  17. Ponce, J., Forsyth, D.: Computer vision: a modern approach (2012)

    Google Scholar 

  18. Popielski, P., Wróbel, Z.: An attempt to optimize the process of automatic point matching for homogeneous surface objects. Arch. Fotogram. Kartogr. i Teledetekcji. 22, 351–361 (2011)

    Google Scholar 

  19. Popielski, P., Wróbel, Z.: The Feature Detection on the Homogeneous Surfaces with Projected Pattern. Lecture Notes in Computer Science, vol. 118–128. Springer, Berlin Heidelberg (2012)

    Google Scholar 

  20. Popielski, P., Wróbel, Z., Koprowski, R.: The effectiveness of matching methods for rectified images. In: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. pp. 479–489. Advances in Intelligent Systems and Computing, Springer International Publishing (2013)

    Google Scholar 

  21. Popielski, P., Wróbel, Z., Koprowski, R.: Object Detail Correspondence Problem in Stereovision. Advances in Intelligent Systems and Computing, vol. 3, pp. 209–222, Springer International Publishing (2014)

    Google Scholar 

  22. Ralli, J., Díaz, J., Ros, E.: Spatial and temporal constraints in variational correspondence methods. Mach. Vis. Appl. 24, 275–287 (2011)

    Article  Google Scholar 

  23. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  24. Shapiro, L., Stockman, G.: Comput. Vis. (2001)

    Google Scholar 

  25. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. Proc. Seventh IEEE Int. Conf. Comput. Vis. 1, 0–7 (1999)

    Google Scholar 

  26. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Popielski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Popielski, P., Koprowski, R., Wróbel, Z. (2016). The Fast Matching Algorithm for Rectified Stereo Images. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technologies in Medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-319-39796-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39796-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39795-5

  • Online ISBN: 978-3-319-39796-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics