Abstract
In their research, the authors focus on the rapid methods for matching rectified images which can be readily implemented on mobile devices. First, the new method for matching images performs binarization of images and transforms them so that they depict edges. The disparity map is created in accordance with the principle that the correct disparity is the minimum distance of the calculated distances between a point in the left image and all the points in the right image in a given row. The method is illustrated on the basis of the authors’ own images as well as standard images from the Middlebury library. In addition, the method has been compared with well recognized and commonly used algorithms for matching images, namely variational and semi-global methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
2006 Stereo datasets with ground truth. http://vision.middlebury.edu/stereo/data/scenes2006/
Bouguet, J.-Y.: Complete Camera Calibration Toolbox for Matlab (1999). http://www.vision.caltech.edu/bouguetj/
Brown, D.C.: Close-range camera calibration. Photogram. Eng. Remote Sens. 37, 855–866 (1971)
D’Apuzzo, N.: Automated photogrammetric measurement of human faces. Int. Arch. Photogramm. Remote Sens. 32(B5), 402–407 (1998)
D’Apuzzo, N.: Measurement and modeling of human faces from multi images. Int. Arch. Photogramm. Remote Sens. 34(5), 241–246 (2002)
Fryer, J.G., Brown, D.C.: Lens distortion for close-range photogrammetry. Photogramm. Eng. Rem. S. 52, 51–58 (1986)
Golec, J., Ziemka, A., Szczygiel, E., Czechowska, D., Milert, A., Kreska-Korus, A., Golec, E.: Photogrametrical analysis body position in hips osteoarthrosis. Ostry Dyzur. 5, 1–7 (2012)
Golec, J., Tomaszewski, K., Maslon, A., Szczygiel, E., Hladki, W., Golec, E.: The assessment of gait symmetry disorders and chosen body posture parameters among patients with polyarticular osteoarthritis. Ostry Dyzur. 6, 91–95 (2013)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2003)
Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: Proceedings of IEEE Computer Society, Conference on Computer Vision and Pattern Recognition. pp. 1106–1112. IEEE Computer Society (1997)
Hirschműller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341 (2008)
Kraus, K.: Photogrammetry: Geometry from Images and Laser Scans. Walter de Gruyter (2007)
Mitchell, H.L.: Applications of digital photogrammetry to medical investigations. ISPRS J. Photogramm. Remote Sens. 50, 27–36 (1995)
Mitchell, H.L., Newton, I.: Medical photogrammetric measurement: overview and prospects. ISPRS J. Photogramm. Remote Sens. 56, 286–294 (2002)
Otsu, N.: Threshold selection method from grey-level histograms. IEEE Trans. Syst. Man Cybern. SMC-9, 62–66 (1979)
Patias, P.: Medical imaging challenges photogrammetry. Virtual Prototyp. Bio Manuf. Med. Appl. 56, 45–66 (2008)
Ponce, J., Forsyth, D.: Computer vision: a modern approach (2012)
Popielski, P., Wróbel, Z.: An attempt to optimize the process of automatic point matching for homogeneous surface objects. Arch. Fotogram. Kartogr. i Teledetekcji. 22, 351–361 (2011)
Popielski, P., Wróbel, Z.: The Feature Detection on the Homogeneous Surfaces with Projected Pattern. Lecture Notes in Computer Science, vol. 118–128. Springer, Berlin Heidelberg (2012)
Popielski, P., Wróbel, Z., Koprowski, R.: The effectiveness of matching methods for rectified images. In: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. pp. 479–489. Advances in Intelligent Systems and Computing, Springer International Publishing (2013)
Popielski, P., Wróbel, Z., Koprowski, R.: Object Detail Correspondence Problem in Stereovision. Advances in Intelligent Systems and Computing, vol. 3, pp. 209–222, Springer International Publishing (2014)
Ralli, J., Díaz, J., Ros, E.: Spatial and temporal constraints in variational correspondence methods. Mach. Vis. Appl. 24, 275–287 (2011)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)
Shapiro, L., Stockman, G.: Comput. Vis. (2001)
Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. Proc. Seventh IEEE Int. Conf. Comput. Vis. 1, 0–7 (1999)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Popielski, P., Koprowski, R., Wróbel, Z. (2016). The Fast Matching Algorithm for Rectified Stereo Images. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technologies in Medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-319-39796-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-39796-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39795-5
Online ISBN: 978-3-319-39796-2
eBook Packages: EngineeringEngineering (R0)