Abstract
The imaging of the anterior segment of the eye plays a crucial role in today’s ophthalmology. Despite the variety of existing methods, only a few have the possibility to estimate the corneal dynamics. The purpose of this article is to review the currently available methods of imaging the anterior segment of the eye capable of evaluating the dynamics of corneal deformation in response to air pulse. In the paper the Corvis ST, Ocular Response Analyzer (ORA) and optical coherence tomography (OCT) combined with air puff system were described and discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abitbol, O., Bouden, J., Doan, S., Hoang-Xuan, T., Gatinel, D.: Corneal hysteresis measured with the Ocular Response Analyzer in normal and glaucomatous eyes. Acta Ophthalmol. 88, 116–9 (2010)
Agarwal, D.R., Ehrlich, J.R., Shimmyo, M., Radcliffe, N.M.: The relationship between corneal hysteresis and the magnitude of intraocular pressure reduction with topical prostaglandin therapy. Br. J. Ophthalmol. 96, 254–257 (2012)
Ali, N.Q., Patel, D.V., McGhee, C.N.J.: Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest. Ophthalmol. Vis. Sci. 55, 3651–3659 (2014)
Alonso-Caneiro, D., Karnowski, K., Kaluzny, B.J., Kowalczyk, A., Wojtkowski, M.: Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system. Opt. Express 19, 14188–14199 (2011)
Bonatti, J.A., Bechara, S.J., Carricondo, P.C., Kara-José, N.: Proposal for a new approach to corneal biomechanics?: dynamic corneal topography. Arq. Bras. Oftalmol. 72, 264–267 (2009)
Correia, F.F., Ramos, I., Roberts, C.J., Steinmueller, A., Krug, M., Ambrósio Jr., R.: Impact of chamber pressure and material properties on the deformation response of corneal models measured by dynamic ultra-high-speed Scheimpflug imaging. Arq. Bras. Oftalmol. 76, 278–281 (2013)
Denoyer, A., Labb, A., Baudouin, C.: Optical coherence tomography. In: Bernardes, R., Cunha-Vaz, J. (eds.) Optical Coherence Tomography, pp. 125–138. Springer, Berlin (2012)
Devi, S.A.: Analyzer, the ocular response. J. Curr. Glaucoma Pract. 3, 24–27 (2009)
Dorronsoro, C., Pascual, D., Pérez-Merino, P., Kling, S., Marcos, S.: Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas. Biomed. Opt. Express 3, 473–487 (2012)
Fontes, B.M., Ambrósio, R., Velarde, G.C., Nosé, W.: Corneal biomechanical evaluation in healthy thin corneas compared with matched keratoconus cases. Arq. Bras. Oftalmol. 74, 13–16 (2011)
Gharaee, H., Abrishami, M., Abrishami, M., Mirhosseini, S.M., Bahar, M.M., Eghbali, P.: Anterior and posterior corneal curvature: normal values in healthy Iranian population obtained with the Orbscan II. Int. Ophthalmol. 34, 1213–1219 (2014)
Hon, Y., Lam, A.K.C.: Corneal deformation measurement using scheimpflug noncontact tonometry. Optom. Vis. Sci. 90, 1–8 (2013)
Hong, J., Xu, J., Wei, A., Deng, S.X., Cui, X., Yu, X., Sun, X.: A new tonometer-the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest. Ophthalmol. Vis. Sci. 54, 659–665 (2013)
Huseynova, T., Waring, G.O., Roberts, C., Krueger, R.R., Tomita, M.: Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am. J. Ophthalmol. 157, 885–893 (2014)
Jedzierowska, M., Koprowski, R., Wrobel, Z.: Overview of the ocular biomechanical properties measured by the Ocular Response Analyzer and the Corvis ST. Inf. Technol. Biomed. 4, 77–386 (2014)
Ji, C., Yu, J., Li, T., Tian, L., Huang, Y., Wang, Y., Zheng, Y.: Dynamic curvature topography for evaluating the anterior corneal surface change with Corvis ST. Biomed. Eng. Online 14, 53 (2015)
Kling, S., Marcos, S.: Contributing factors to corneal deformation in air puff measurements. Invest. Ophthalmol. Vis. Sci. 54, 5078–5085 (2013)
Konstantopoulos, A., Hossain, P., Anderson, D.F.: Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br. J. Ophthalmol. 91, 551–557 (2007)
Koprowski, R., Ambrósio, R.: Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus. Comput. Biol. Med. 66, 170–178 (2015)
Koprowski, R., Lyssek-Boron, A., Nowinska, A., Wylegala, E., Kasprzak, H., Wrobel, Z.: Selected parameters of the corneal deformation in the Corvis tonometer. Biomed. Eng. Online 13, 55 (2014)
Kotecha, A.: What biomechanical properties of the cornea are relevant for the clinician? Surv. Ophthalmol. 52(Suppl 2), S109–14 (2007)
Lanza, M., Iaccarino, S., Bifani, M.: In vivo human corneal deformation analysis with a Scheimpflug camera, a critical review. J. Biophoton. 14 (2016)
Leung, C.K.S., Chan, W.-M., Ko, C.Y., Chui, S.I., Woo, J., Tsang, M.-K., Tse, R.K.K.: Visualization of anterior chamber angle dynamics using optical coherence tomography. Ophthalmology 112, 980–984 (2005)
Leung, C.K., Cheung, C.Y.L., Li, H., Dorairaj, S., Yiu, C.K.F., Wong, A.L., Liebmann, J., Ritch, R., Weinreb, R., Lam, D.S.C.: Dynamic analysis of dark-light changes of the anterior chamber angle with anterior segment OCT. Invest. Ophthalmol. Vis. Sci. 48, 4116–4122 (2007)
Leung, C.K.-S., Ye, C., Weinreb, R.N.: An ultra-high-speed Scheimpflug camera for evaluation of corneal deformation response and its impact on IOP measurement. Invest. Ophthalmol. Vis. Sci. 54, 2885–2892 (2013)
Li, T., Tian, L., Wang, L., Hon, Y., Lam, A.K.C., Huang, Y., Wang, Y., Zheng, Y.: Correction on the distortion of Scheimpflug imaging for dynamic central corneal thickness. J. Biomed. Opt. 20, 56006 (2015)
Li, T., Wang, Y., Chang, C., Hu, N., Zheng, Y.: Color-appearance-model based fusion of gray and pseudo-color images for medical applications. Inf. Fusion 19, 103–114 (2014)
Luce, D.A.: Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract Refract. Surg. 31, 156–162 (2005)
Mansouri, K., Sommerhalder, J., Shaarawy, T.: Prospective comparison of ultrasound biomicroscopy and anterior segment optical coherence tomography for evaluation of anterior chamber dimensions in European eyes with primary angle closure. Eye (Lond.) 24, 233–239 (2010)
Maslin, J.S., Barkana, Y., Dorairaj, S.K.: Anterior segment imaging in glaucoma: an updated review. Indian J. Ophthalmol. 63, 630–640 (2015)
Nemeth, G., Hassan, Z., Csutak, A., Szalai, E., Berta, A., Modis, L.: Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J. Refract. Surg. 29, 558–563 (2013)
Oliveira, C.M., Ribeiro, C., Franco, S.: Corneal imaging with slit-scanning and Scheimpflug imaging techniques. Clin. Exp. Optom. 94, 33–42 (2011)
Ortiz, D., Piñero, D., Shabayek, M.H., Arnalich-Montiel, F., Alió, J.L.: Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J. Cataract Refract. Surg. 33, 1371–1375 (2007)
Pepose, J.S., Feigenbaum, S.K., Qazi, M. a, Sanderson, J.P., Roberts, C.J.: Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. Am. J. Ophthalmol. 143, 39–47 (2007)
Rio-Cristobal, A., Martin, R.: Corneal assessment technologies: current status. Surv. Ophthalmol. 59, 599–614 (2014)
Rogowska, M.E., Iskander, D.R.: Age-related changes in corneal deformation dynamics utilizing scheimpflug imaging. PLoS One 10, e0140093 (2015)
See, J.L.S.: Imaging of the anterior segment in glaucoma. Clin. Exp. Ophthalmol. 37, 506–513 (2009)
Shah, S., Laiquzzaman, M., Bhojwani, R., Mantry, S., Cunliffe, I.: Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007)
Shih, P.-J., Cao, H.-J., Huang, C.-J., Wang, I.-J., Shih, W.-P., Yen, J.-Y.: A corneal elastic dynamic model derived from Scheimpflug imaging technology. Ophthalmic Physiol. Opt. 35, 663–672 (2015)
Siedlecki, D., Kowalik, W., Kasprzak, H.: Optical coherence tomography as a tool for ocular dynamics estimation. Biomed. Res. Int. 2015, 8 (2015)
Silverman, R.H.: High-resolution ultrasound imaging of the eye—a review. Clin. Exp. Ophthalmol. 37, 54–67 (2009)
Tian, L., Huang, Y., Wang, L., Bai, H., Wang, Q., Jiang, J., Wu, Y., Gao, M.: Corneal biomechanical assessment using corneal visualization scheimpflug technology in keratoconic and normal eyes. J. Ophthalmol. 2014, 8 (2014)
Tian, L., Ko, M.W.L., Wang, L.-K., Zhang, J.-Y., Li, T.-J., Huang, Y.-F., Zheng, Y.-P.: Assessment of ocular biomechanics using dynamic ultra high-speed scheimpflug imaging in keratoconic and normal eyes. J. Refract. Surg. 30, 785–791 (2014)
Touboul, D., Roberts, C., Kérautret, J., Garra, C., Maurice-Tison, S., Saubusse, E., Colin, J.: Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. J. Cataract Refract. Surg. 34, 616–622 (2008)
Valbon, B.F., Ambrósio Jr., R., Fontes, B.M., Alves, M.R.: Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq. Bras. Oftalmol. 76, 229–232 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Jȩdzierowska, M., Koprowski, R., Wróbel, Z. (2016). Imaging of the Anterior Eye Segment in the Evaluation of Corneal Dynamics. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technologies in Medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-319-39796-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-39796-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39795-5
Online ISBN: 978-3-319-39796-2
eBook Packages: EngineeringEngineering (R0)