Skip to main content

Imaging of the Anterior Eye Segment in the Evaluation of Corneal Dynamics

  • Conference paper
  • First Online:
Information Technologies in Medicine (ITiB 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 471))

Included in the following conference series:

Abstract

The imaging of the anterior segment of the eye plays a crucial role in today’s ophthalmology. Despite the variety of existing methods, only a few have the possibility to estimate the corneal dynamics. The purpose of this article is to review the currently available methods of imaging the anterior segment of the eye capable of evaluating the dynamics of corneal deformation in response to air pulse. In the paper the Corvis ST, Ocular Response Analyzer (ORA) and optical coherence tomography (OCT) combined with air puff system were described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abitbol, O., Bouden, J., Doan, S., Hoang-Xuan, T., Gatinel, D.: Corneal hysteresis measured with the Ocular Response Analyzer in normal and glaucomatous eyes. Acta Ophthalmol. 88, 116–9 (2010)

    Article  Google Scholar 

  2. Agarwal, D.R., Ehrlich, J.R., Shimmyo, M., Radcliffe, N.M.: The relationship between corneal hysteresis and the magnitude of intraocular pressure reduction with topical prostaglandin therapy. Br. J. Ophthalmol. 96, 254–257 (2012)

    Article  Google Scholar 

  3. Ali, N.Q., Patel, D.V., McGhee, C.N.J.: Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest. Ophthalmol. Vis. Sci. 55, 3651–3659 (2014)

    Google Scholar 

  4. Alonso-Caneiro, D., Karnowski, K., Kaluzny, B.J., Kowalczyk, A., Wojtkowski, M.: Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system. Opt. Express 19, 14188–14199 (2011)

    Article  Google Scholar 

  5. Bonatti, J.A., Bechara, S.J., Carricondo, P.C., Kara-José, N.: Proposal for a new approach to corneal biomechanics?: dynamic corneal topography. Arq. Bras. Oftalmol. 72, 264–267 (2009)

    Article  Google Scholar 

  6. Correia, F.F., Ramos, I., Roberts, C.J., Steinmueller, A., Krug, M., Ambrósio Jr., R.: Impact of chamber pressure and material properties on the deformation response of corneal models measured by dynamic ultra-high-speed Scheimpflug imaging. Arq. Bras. Oftalmol. 76, 278–281 (2013)

    Article  Google Scholar 

  7. Denoyer, A., Labb, A., Baudouin, C.: Optical coherence tomography. In: Bernardes, R., Cunha-Vaz, J. (eds.) Optical Coherence Tomography, pp. 125–138. Springer, Berlin (2012)

    Chapter  Google Scholar 

  8. Devi, S.A.: Analyzer, the ocular response. J. Curr. Glaucoma Pract. 3, 24–27 (2009)

    Google Scholar 

  9. Dorronsoro, C., Pascual, D., Pérez-Merino, P., Kling, S., Marcos, S.: Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas. Biomed. Opt. Express 3, 473–487 (2012)

    Article  Google Scholar 

  10. Fontes, B.M., Ambrósio, R., Velarde, G.C., Nosé, W.: Corneal biomechanical evaluation in healthy thin corneas compared with matched keratoconus cases. Arq. Bras. Oftalmol. 74, 13–16 (2011)

    Google Scholar 

  11. Gharaee, H., Abrishami, M., Abrishami, M., Mirhosseini, S.M., Bahar, M.M., Eghbali, P.: Anterior and posterior corneal curvature: normal values in healthy Iranian population obtained with the Orbscan II. Int. Ophthalmol. 34, 1213–1219 (2014)

    Google Scholar 

  12. Hon, Y., Lam, A.K.C.: Corneal deformation measurement using scheimpflug noncontact tonometry. Optom. Vis. Sci. 90, 1–8 (2013)

    Article  Google Scholar 

  13. Hong, J., Xu, J., Wei, A., Deng, S.X., Cui, X., Yu, X., Sun, X.: A new tonometer-the Corvis ST tonometer: clinical comparison with noncontact and Goldmann applanation tonometers. Invest. Ophthalmol. Vis. Sci. 54, 659–665 (2013)

    Article  Google Scholar 

  14. Huseynova, T., Waring, G.O., Roberts, C., Krueger, R.R., Tomita, M.: Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am. J. Ophthalmol. 157, 885–893 (2014)

    Article  Google Scholar 

  15. Jedzierowska, M., Koprowski, R., Wrobel, Z.: Overview of the ocular biomechanical properties measured by the Ocular Response Analyzer and the Corvis ST. Inf. Technol. Biomed. 4, 77–386 (2014)

    Google Scholar 

  16. Ji, C., Yu, J., Li, T., Tian, L., Huang, Y., Wang, Y., Zheng, Y.: Dynamic curvature topography for evaluating the anterior corneal surface change with Corvis ST. Biomed. Eng. Online 14, 53 (2015)

    Article  Google Scholar 

  17. Kling, S., Marcos, S.: Contributing factors to corneal deformation in air puff measurements. Invest. Ophthalmol. Vis. Sci. 54, 5078–5085 (2013)

    Article  Google Scholar 

  18. Konstantopoulos, A., Hossain, P., Anderson, D.F.: Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br. J. Ophthalmol. 91, 551–557 (2007)

    Article  Google Scholar 

  19. Koprowski, R., Ambrósio, R.: Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus. Comput. Biol. Med. 66, 170–178 (2015)

    Article  Google Scholar 

  20. Koprowski, R., Lyssek-Boron, A., Nowinska, A., Wylegala, E., Kasprzak, H., Wrobel, Z.: Selected parameters of the corneal deformation in the Corvis tonometer. Biomed. Eng. Online 13, 55 (2014)

    Article  Google Scholar 

  21. Kotecha, A.: What biomechanical properties of the cornea are relevant for the clinician? Surv. Ophthalmol. 52(Suppl 2), S109–14 (2007)

    Article  MathSciNet  Google Scholar 

  22. Lanza, M., Iaccarino, S., Bifani, M.: In vivo human corneal deformation analysis with a Scheimpflug camera, a critical review. J. Biophoton. 14 (2016)

    Google Scholar 

  23. Leung, C.K.S., Chan, W.-M., Ko, C.Y., Chui, S.I., Woo, J., Tsang, M.-K., Tse, R.K.K.: Visualization of anterior chamber angle dynamics using optical coherence tomography. Ophthalmology 112, 980–984 (2005)

    Article  Google Scholar 

  24. Leung, C.K., Cheung, C.Y.L., Li, H., Dorairaj, S., Yiu, C.K.F., Wong, A.L., Liebmann, J., Ritch, R., Weinreb, R., Lam, D.S.C.: Dynamic analysis of dark-light changes of the anterior chamber angle with anterior segment OCT. Invest. Ophthalmol. Vis. Sci. 48, 4116–4122 (2007)

    Article  Google Scholar 

  25. Leung, C.K.-S., Ye, C., Weinreb, R.N.: An ultra-high-speed Scheimpflug camera for evaluation of corneal deformation response and its impact on IOP measurement. Invest. Ophthalmol. Vis. Sci. 54, 2885–2892 (2013)

    Article  Google Scholar 

  26. Li, T., Tian, L., Wang, L., Hon, Y., Lam, A.K.C., Huang, Y., Wang, Y., Zheng, Y.: Correction on the distortion of Scheimpflug imaging for dynamic central corneal thickness. J. Biomed. Opt. 20, 56006 (2015)

    Article  Google Scholar 

  27. Li, T., Wang, Y., Chang, C., Hu, N., Zheng, Y.: Color-appearance-model based fusion of gray and pseudo-color images for medical applications. Inf. Fusion 19, 103–114 (2014)

    Article  Google Scholar 

  28. Luce, D.A.: Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J. Cataract Refract. Surg. 31, 156–162 (2005)

    Article  Google Scholar 

  29. Mansouri, K., Sommerhalder, J., Shaarawy, T.: Prospective comparison of ultrasound biomicroscopy and anterior segment optical coherence tomography for evaluation of anterior chamber dimensions in European eyes with primary angle closure. Eye (Lond.) 24, 233–239 (2010)

    Article  Google Scholar 

  30. Maslin, J.S., Barkana, Y., Dorairaj, S.K.: Anterior segment imaging in glaucoma: an updated review. Indian J. Ophthalmol. 63, 630–640 (2015)

    Article  Google Scholar 

  31. Nemeth, G., Hassan, Z., Csutak, A., Szalai, E., Berta, A., Modis, L.: Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J. Refract. Surg. 29, 558–563 (2013)

    Article  Google Scholar 

  32. Oliveira, C.M., Ribeiro, C., Franco, S.: Corneal imaging with slit-scanning and Scheimpflug imaging techniques. Clin. Exp. Optom. 94, 33–42 (2011)

    Article  Google Scholar 

  33. Ortiz, D., Piñero, D., Shabayek, M.H., Arnalich-Montiel, F., Alió, J.L.: Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J. Cataract Refract. Surg. 33, 1371–1375 (2007)

    Article  Google Scholar 

  34. Pepose, J.S., Feigenbaum, S.K., Qazi, M. a, Sanderson, J.P., Roberts, C.J.: Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. Am. J. Ophthalmol. 143, 39–47 (2007)

    Google Scholar 

  35. Rio-Cristobal, A., Martin, R.: Corneal assessment technologies: current status. Surv. Ophthalmol. 59, 599–614 (2014)

    Article  Google Scholar 

  36. Rogowska, M.E., Iskander, D.R.: Age-related changes in corneal deformation dynamics utilizing scheimpflug imaging. PLoS One 10, e0140093 (2015)

    Article  Google Scholar 

  37. See, J.L.S.: Imaging of the anterior segment in glaucoma. Clin. Exp. Ophthalmol. 37, 506–513 (2009)

    Article  Google Scholar 

  38. Shah, S., Laiquzzaman, M., Bhojwani, R., Mantry, S., Cunliffe, I.: Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007)

    Article  Google Scholar 

  39. Shih, P.-J., Cao, H.-J., Huang, C.-J., Wang, I.-J., Shih, W.-P., Yen, J.-Y.: A corneal elastic dynamic model derived from Scheimpflug imaging technology. Ophthalmic Physiol. Opt. 35, 663–672 (2015)

    Article  Google Scholar 

  40. Siedlecki, D., Kowalik, W., Kasprzak, H.: Optical coherence tomography as a tool for ocular dynamics estimation. Biomed. Res. Int. 2015, 8 (2015)

    Google Scholar 

  41. Silverman, R.H.: High-resolution ultrasound imaging of the eye—a review. Clin. Exp. Ophthalmol. 37, 54–67 (2009)

    Article  Google Scholar 

  42. Tian, L., Huang, Y., Wang, L., Bai, H., Wang, Q., Jiang, J., Wu, Y., Gao, M.: Corneal biomechanical assessment using corneal visualization scheimpflug technology in keratoconic and normal eyes. J. Ophthalmol. 2014, 8 (2014)

    Google Scholar 

  43. Tian, L., Ko, M.W.L., Wang, L.-K., Zhang, J.-Y., Li, T.-J., Huang, Y.-F., Zheng, Y.-P.: Assessment of ocular biomechanics using dynamic ultra high-speed scheimpflug imaging in keratoconic and normal eyes. J. Refract. Surg. 30, 785–791 (2014)

    Article  Google Scholar 

  44. Touboul, D., Roberts, C., Kérautret, J., Garra, C., Maurice-Tison, S., Saubusse, E., Colin, J.: Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. J. Cataract Refract. Surg. 34, 616–622 (2008)

    Article  Google Scholar 

  45. Valbon, B.F., Ambrósio Jr., R., Fontes, B.M., Alves, M.R.: Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq. Bras. Oftalmol. 76, 229–232 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Jȩdzierowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jȩdzierowska, M., Koprowski, R., Wróbel, Z. (2016). Imaging of the Anterior Eye Segment in the Evaluation of Corneal Dynamics. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technologies in Medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-319-39796-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39796-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39795-5

  • Online ISBN: 978-3-319-39796-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics