Skip to main content

Algorithms for Queryable Uncertainty

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9711))

Included in the following conference series:

  • 610 Accesses

Abstract

Queryable uncertainty refers to settings where the input of a problem is initially not known precisely, but exact information about the input can be obtained at a cost using queries. A natural goal is then to minimize the number of the queries that are required until the precise information that has been obtained about the input is sufficient for solving the problem. The performance of an algorithm can be measured using competitive analysis, comparing the number of queries made by the algorithm to the minimum possible number of queries. We describe the witness set algorithm concept and how it yields query-competitive algorithms for minimum spanning tree and cheapest set problems under uncertainty. We also discuss the problem variant where the algorithm can make a bounded number of simultaneous queries in each round and the goal is to minimize the number of rounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kahan, S.: A model for data in motion. In: 23rd Annual ACM Symposium on Theory of Computing (STOC 1991), pp. 267–277 (1991)

    Google Scholar 

  2. Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation queries over replicated data. In: 26th International Conference on Very Large Data Bases (VLDB 2000), pp. 144–155 (2000)

    Google Scholar 

  3. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies for geometric computing with uncertainty. Theor. Comput. Syst. 38, 411–423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Erlebach, T., Hoffmann, M., Krizanc, D., Mihalák, M., Raman, R.: Computing minimum spanning trees with uncertainty. In: 25th International Symposium on Theoretical Aspects of Computer Science (STACS 2008). LIPIcs, vol. 1, pp. 277–288 (2008)

    Google Scholar 

  5. Megow, N., Meißner, J., Skutella, M.: Randomization helps computing a minimum spanning tree under uncertainty. In: Bansal, N., Finocchi, I. (eds.) Algorithms - ESA 2015. LNCS, vol. 9294, pp. 878–890. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  6. Erlebach, T., Hoffmann, M., Kammer, F.: Query-competitive algorithms for cheapest set problems under uncertainty. Theor. Comput. Sci. 613, 51–64 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gupta, M., Sabharwal, Y., Sen, S.: The update complexity of selection and related problems. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011). LIPIcs, vol. 13, pp. 325–338 (2011)

    Google Scholar 

  8. Tseng, K.-C.R., Kirkpatrick, D.: Input-thrifty extrema testing. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 554–563. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Goerigk, M., Gupta, M., Ide, J., Schöbel, A., Sen, S.: The robust knapsack problem with queries. Comput. OR 55, 12–22 (2015)

    Article  MathSciNet  Google Scholar 

  10. Guha, S., Munagala, K.: Model-driven optimization using adaptive probes. In: 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 308–317 (2007)

    Google Scholar 

  11. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the median with uncertainty. SIAM J. Comput. 32, 538–547 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing shortest paths with uncertainty. J. Algorithms 62, 1–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erlebach, T., Hoffmann, M.: Query-competitive algorithms for computing with uncertainty. Bulletin of the EATCS 116 (2015)

    Google Scholar 

  14. Wang, Y., Wong, S.C.-W.: Two-sided online bipartite matching and vertex cover: beating the greedy algorithm. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 1070–1081. Springer, Heidelberg (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Erlebach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Erlebach, T. (2016). Algorithms for Queryable Uncertainty. In: Zhu, D., Bereg, S. (eds) Frontiers in Algorithmics. FAW 2016. Lecture Notes in Computer Science(), vol 9711. Springer, Cham. https://doi.org/10.1007/978-3-319-39817-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39817-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39816-7

  • Online ISBN: 978-3-319-39817-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics