Skip to main content

Development of New Testing Method of Mechanical Properties of Porcine Coronary Arteries

  • Conference paper
  • First Online:
Information Technologies in Medicine (ITiB 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 472))

Included in the following conference series:

Abstract

This study aims to develop a testing methodology enabling the determination of mechanical properties of coronary arteries based on the example of porcine arteries using the MTS Insight 2 strength testing machine and digital image correlation (DIC). The conducted ballooning strength tests and static tensile tests revealed linear dependence between longitudinal and transverse strain of the arteries. The test results presented enable the evaluation and identification of the mechanical properties of porcine coronary arteries as well as prediction of the risk of the coronary artery rupture in the planned angioplasty and stent implantation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andel, C., Pistecky, P., Borst, C.: Mechanical properties of porcine and human arteries: implications for coronary anastomotic connectors. Ann. Thorac. Surg. 76(1), 58–64 (2003)

    Article  Google Scholar 

  2. Carmines, V., McElhaney, J.H., Stack, R.: A piece-wise non-linear elastic stress expression of human and pig coronary arteries tested in vitro. J. Biomech. 24, 899–906 (1991)

    Article  Google Scholar 

  3. Gow, C., Hadfield, C.: The elasticity of canine and human coronary arteries with reference to postmortem changes. Circ. Res. 45, 588–594 (1979)

    Article  Google Scholar 

  4. Holzapfel, G.A., Gasser, T.C.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Holzapfel, G., Sommer, G., Gasser, C., Regitnig, P.: Determination of layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling. Am. J. Physiol.-Heart Circ. Physiol. 289, H2048–H2058 (2005)

    Google Scholar 

  6. Jankowska, M., Bartkowiak-Jowsa, M., Będziźski, R.: Experimental and constitutive modeling approaches for a study of biomechanical properties of human coronary arteries. J. Mech. Behav. Biomed. Mater. 50, 1–12 (2015)

    Google Scholar 

  7. Lasheras, J.C.: The biomechanics of arterial aneurysms. Annu. Rev. Fluid Mech. 39, 293–319 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lally, C., Reid, A., Prendergast, P.: Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann. Biomed. Eng. 32, 1355–1364 (2004)

    Article  Google Scholar 

  9. Chow, M.-J., Zhang, Y.: Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J. Surg. Res. 171, 434–442 (2011)

    Article  Google Scholar 

  10. Monson, K.L., Matsumoto, M.M., Young, W.L., Manley, G.T., Hashimoto, T.: Abrupt increase in ray carotid blood flow induces rapid alteration of artery mechanical properties. J. Mech. Behav. Biomed. Mater. 4(1), 9–15 (2011)

    Article  Google Scholar 

  11. Pandit, A., Lu, X., Wang, C., Kassab, G.: Biaxial elastic material properties of porcine coronary media and adventitia. Am. J. Physiol.: Heart Circ. Physiol. 288, H2581–H2587 (2005)

    Google Scholar 

  12. Sommer, G., Regitnig, P., Koltringer, L., Holzapfel, G.A.: Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supra-physiological loadings. Am. J. Physiol. Heart Circ. Physio. 298, 898–912 (2010)

    Article  Google Scholar 

  13. Gziut, A.I., Kulawik, T., Młotek, M.: Asymptomatic coronary fistula disclosed during angioplasty performed due to acute coronary syndrome. Kardiol. Pol. 66, 105–107 (2008)

    Google Scholar 

  14. Kurkowska-Nouyrigat, W., Szumbaski, J.: Modelowanie przepływu krwi przez naczynia wieńcowe ze stentem (Modeling of blood flow through stented coronary arteries). Aktualne Problemy Biomechaniki. 3, 115–120 (2009) (in Polish)

    Google Scholar 

  15. Roy, C.S.: The elastic properties of the arterial wall. J. Physiol. 3(2), 125–159 (1881)

    Article  Google Scholar 

  16. Fung, Y.C.B.: Elasticity of soft tissue in simple elongation. Am. J. Physiol. 156, 445 (1961)

    Article  Google Scholar 

  17. Lake, L.W., Armeniades, C.D.: Structure—property relations of aortic tissue. ASAIO J. 18(1), 202–208 (1972)

    Article  Google Scholar 

  18. Chow, M.J., Zhang, Y.: Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J. Surg. Res. 171(2), 434–442 (2011)

    Article  Google Scholar 

  19. Tremblay, D., Cartier, R., Mongrain, R., Leask, R.L.: Regional dependency of the vascular smooth muscle cell contribution to the mechanical properties of the pig ascending aortic tissue. J. Biomech. 43, 2448–2451 (2010)

    Article  Google Scholar 

  20. Ciszek, B., Cieślicki, K., Krajewski, P., Piechnik, S.K.: Critical pressure for arterial wall rupture in major human cerebral arteries. Stroke 44(11), 3226–3228 (2013)

    Google Scholar 

  21. Holzapfel, G.A., Sommer, G., Gasser, C.T., Regitnig, P.: Determination of layer—specific mechanical properties. Circulation 289, H2048–2058 (2005)

    Google Scholar 

  22. Badel, P., Avril, S., Lessner, S., Sutton, M.: Mechanical identification of layer-specific properties of mouse carotid arteries using 3D-DIC and a hyperelastic anisotropic constitutive model. Comput. Methods Biomech. Biomed. Eng. 15, 37–48 (2012)

    Article  Google Scholar 

  23. Wittek, A., Karatolios, K., Bihari, P., Schmitz-Rixenc, T., Moosdorf, R., Vogt, S., Blase, C.: In vivo determination of elastic properties of the human aorta based on 4D ultrasound data. J. Mech. Behav. Biomed. Mater. 27, 167–183 (2013)

    Article  Google Scholar 

  24. Kajzer, A., Kajzer, W., Gzik-Zroska, B., Wolański, W., Janicka, I., Dzielicki, J.: Experimental biomechanical assessment of plate stabilizers for treatment of pectus excavatum. Acta Bioeng. Biomech. 15(3), 113–121 (2013)

    Google Scholar 

  25. Kokot, G., Binkowski, M., John, A., Gzik-Zroska, B.: Advanced mechanical testing methods in determining bone material. In: Mechanika: Proccedings of 17th International Conference, Kaunas, pp. 139–143 (2012)

    Google Scholar 

Download references

Acknowledgments

The study was supported by National Centre for Research and Development under grant STRATEGMED2/269760/1/NCBR/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bożena Gzik-Zroska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gzik-Zroska, B., Joszko, K., Wolański, W., Gzik, M. (2016). Development of New Testing Method of Mechanical Properties of Porcine Coronary Arteries. In: Piętka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technologies in Medicine. ITiB 2016. Advances in Intelligent Systems and Computing, vol 472. Springer, Cham. https://doi.org/10.1007/978-3-319-39904-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39904-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39903-4

  • Online ISBN: 978-3-319-39904-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics