Skip to main content

Drag Reduction via Phase Randomization in Turbulent Pipe Flow

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2015

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 112))

  • 1416 Accesses

Abstract

In this study, possibility of reducing drag in turbulent pipe flow via phase randomization is investigated. Phase randomization is a passive drag reduction mechanism, the main idea behind which is, reduction in drag can be obtained via distrupting the wave-like structures present in the flow. To facilitate the investigation flow in a circular cylindrical pipe is simulated numerically. DNS (direct numerical simulation) approach is used with a solenoidal spectral formulation, hence the continuity equation is automatically satisfied (Tugluk and Tarman, Acta Mech 223(5):921–935, 2012). Simulations are performed for flow driven by a constant mass flux, at a bulk Reynolds number (Re) of 4900. Legendre polynomials are used in constructing the solenoidal basis functions employed in the numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Ascher, S.J. Ruuth, B.T.R. Wetton, Implicit-explicit methods for time-dependent pde’s. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. K.S. Choi, M. Graham, Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluids 10 (1) 7 (1998)

    Google Scholar 

  3. J.M.J. Den Toonder, M.A. Hulsen, G.D.C. Kuiken, F.T.M. Nieuwstadt, Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. J. Fluid Mech. 337, 193–231 (1997)

    Article  Google Scholar 

  4. A. Duggleby, K.S. Ball, M.R. Paul, The effect of spanwise wall oscillation on turbulent pipe flow structures resulting in drag reduction. Phys. Fluids 19 (12), 125107 (2007)

    Google Scholar 

  5. R.A. Handler, E. Levich, L. Sirovich, Drag reduction in turbulent channel flow by phase randomization. Phys. Fluids A 5 (3), 686–695 (1993)

    Article  MATH  Google Scholar 

  6. W.J. Jung, N. Mangiavacchi, F.L. Akhavan, Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4 (8), 1605–1608 (1992)

    Article  Google Scholar 

  7. A. Meseguer, L.N. Trefethen, A spectral Petrov-Galerkin formulation for pipe flow I: Linear Stability and transient growth. Technical report, Oxford University Computing Laboratory, 2000

    Google Scholar 

  8. A. Meseguer, L.N. Trefethen, A spectral Petrov-Galerkin formulation for pipe flow: II nonlinear transitional stages. Technical report, Oxford University Computing Laboratory, Oxford, 2001

    Google Scholar 

  9. A. Meseguer, L.N. Trefethen, Linearized pipe flow to reynolds number 107. J. Comput. Phys. 186 (1), 178–197 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. N.M.G. Mhuiris, The construction and use of divergence free vector expansions for incompressible fluid flow calculations. Technical report 86, NASA, 1986

    Google Scholar 

  11. R. Moser, P. Moin, A. Leonard, A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow. J. Comput. Phys. 52 (3), 524–544 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. N.V. Nikitin, On the mechanism of turbulence suppression by spanwise surface oscillations. Fluid Dyn. 35 (2), 185–190 (2000)

    Article  MATH  Google Scholar 

  13. F. Pasquarelli, A. Quarteroni, G. Sacchi-Landriani, Spectral approximations of the Stokes problem by divergence-free functions. J. Sci. Comput. 2 (3), 195–226 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Priymak, Accurate Navier-Stokes investigation of transitional and turbulent flows in a circular pipe. J. Comput. Phys. 142 (2), 370–411 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Quadrio, P. Ricco, Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)

    Article  MATH  Google Scholar 

  16. M. Quadrio, S. Sibilla, Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424, 217–241 (2000)

    Article  MATH  Google Scholar 

  17. L. Sirovich, S. Karlsson, Turbulent drag reduction by passive mechanisms. Nature 388 (6644), 728–730 (1997)

    Article  Google Scholar 

  18. O. Tugluk, H.I. Tarman, Solenoidal bases for numerical studies of transition in pipe flow. Physica Scripta T142, 014009 (2010)

    Article  Google Scholar 

  19. O. Tugluk, H.I. Tarman, Direct numerical simulation of pipe flow using a solenoidal spectral method. Acta Mechanica 223 (5), 921–935 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Tugluk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tugluk, O., Tarman, H.I. (2016). Drag Reduction via Phase Randomization in Turbulent Pipe Flow. In: Karasözen, B., Manguoğlu, M., Tezer-Sezgin, M., Göktepe, S., Uğur, Ö. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2015. Lecture Notes in Computational Science and Engineering, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-319-39929-4_44

Download citation

Publish with us

Policies and ethics