Skip to main content

Numerical Simulation of 3D Flow of Viscous and Viscoelastic Fluids in T-Junction Channel

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2015

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 112))

Abstract

This paper is interested in the numerical simulation of steady flows of laminar incompressible viscous and viscoelastic fluids through the channel with T-junction. The flow is described by the system of generalized incompressible Navier-Stokes equations. For the different choice of fluids model the different model of the stress tensor is used, Newtonian and Oldroyd-B models. Numerical tests are performed on three dimensional geometry, a branched channel with one entrance and two outlet parts. Numerical solution of the described models is based on cell-centered finite volume method using explicit Runge-Kutta time integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Anand, J. Kwack, A. Masud, A new generalized Oldroyd-B model for blood flow in complex geometries. Int. J. Eng. Sci. 72, 78–88 (2013)

    Article  Google Scholar 

  2. L. Beneš, P. Louda, K. Kozel, R. Keslerová, J. Štigler, Numerical simulations of flow through channels with T-junction. Appl. Math. Comput. 219, 7225–7235 (2013)

    MathSciNet  MATH  Google Scholar 

  3. T. Bodnar, A. Sequeira, Numerical study of the significance of the non-Newtonian nature of blood in steady flow through stenosed vessel, in Advances in Mathematical Fluid Mechanics (Springer, Heidelberg/Dordrecht, 2010), pp. 83–104

    Google Scholar 

  4. T. Bodnar, A. Sequeira, L. Pirkl, Numerical simulations of blood flow in a stenosed vessel under different flow rates using a generalized Oldroyd-B model. Numer. Anal. Appl. Math. 2, 645–648 (2009)

    Article  MATH  Google Scholar 

  5. T. Bodnar, A. Sequeira, M. Prosi, On the shear-thinning and viscoelastic effects of blood flow under various flow rates. Appl. Math. Comput. 217, 5055–5067 (2010)

    MathSciNet  MATH  Google Scholar 

  6. A.J. Chorin, A numerical method for solving incompressible viscous flow problem. J. Comput. Phys. 135, 118–125 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Keslerová, K. Kozel, Numerical simulation of viscous and viscoelastic fluids flow by finite volume method, in 6th International Symposium on Finite Volumes for Complex Applications, Prague (2011)

    MATH  Google Scholar 

  8. R. Keslerová, K. Kozel, Numerical simulation of generalized Newtonian and Oldroyd-B fluids flow, in 16th Seminar on Programs and Algorithms of Numerical Mathematics, Dolní Maxov (2012)

    Google Scholar 

  9. A. Leuprecht, K. Perktold, Computer simulation of non-Newtonian effects of blood flow in large arteries. Comput. Methods Biomech. Biomech. Eng. 4, 149–163 (2001)

    Article  Google Scholar 

  10. R. LeVeque, Finite-Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge/New York, 2004)

    Google Scholar 

  11. P. Louda, J. Příhoda, K. Kozel, P. Sváček, Numerical simulation of flows over 2D and 3D backward-facing inclined steps. Int. J. Heat Fluid Flow 43, 268–276 (2013)

    Article  Google Scholar 

  12. H.M. Matos, P.J. Oliveira, Steady flows of constant-viscosity viscoelastic fluids in a planar T-junction. J. Non-Newton. Fluid Mech. 213, 15–26 (2014)

    Article  Google Scholar 

  13. R.J. Poole, S.J. Haward, M.A. Alves, Symmetry-breaking bifurcations in T-channel flows: effects of fluid viscoelasticity. Procedia Eng. 79, 28–34 (2014)

    Article  Google Scholar 

  14. M.G. Rabby, A. Razzak, M.M. Molla, Pulsatile non-Newtonian blood flow through a model of arterial stenosis. Procedia Eng. 56, 225–231 (2013)

    Article  Google Scholar 

  15. J. Vimmr, A. Jonášová, O. Bublík, Effects of three geometrical parameters on pulsatile blood flow in complete idealised coronary bypasses. Math. Comput. Simul. 80, 1324–1336 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by grant SGS16/206/OHK2/3T/12 of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radka Keslerová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Keslerová, R., Trdlička, D. (2016). Numerical Simulation of 3D Flow of Viscous and Viscoelastic Fluids in T-Junction Channel. In: Karasözen, B., Manguoğlu, M., Tezer-Sezgin, M., Göktepe, S., Uğur, Ö. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2015. Lecture Notes in Computational Science and Engineering, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-319-39929-4_47

Download citation

Publish with us

Policies and ethics