Skip to main content

Modeling of a Three-Dimensional Spherulite Microstructure in Semicrystalline Polymers

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2015

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 112))

  • 1433 Accesses

Abstract

A finite element (FE) model, that explicitly discretizes a single 3D spherulite is proposed. A spherulite is a two-phase microstructure consisting of amorphous and crystalline regions. Crystalline regions, that grow from a central nucleus in the form of lamellae, have particular lattice orientations. In the FE analyses, 8-chain and crystal viscoplasticity constitutive models are employed. Stress-strain distributions and slip system activities in the spherulite microstructure are studied and found to be in good agreement with the literature. Influences of the crystallinity ratio on the yield stress and the initial Young’s modulus are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Allan, M. Bevis, Deformation processes in thin melt-cast films of high-density polyethylene – 2. deformation processes in the non-equatorial regions of spherulites. Philos. Mag. A 41 (4), 555–572 (1980)

    Google Scholar 

  2. E.M. Arruda, M.C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41 (2), 389–412 (1993)

    Article  Google Scholar 

  3. C.L. Choy, W.P. Leung, Elastic moduli of ultradrawn polyethylene. J. Polym. Sci. A-2, Polym. Phys. 23 (9), 1759–1780 (1985)

    Google Scholar 

  4. B. Crist, C.J. Fisher, P.R. Howard, Mechanical properties of model polyethylenes: tensile elastic modulus and yield stress. Macromolecules 22 (5), 1709–1718 (1989)

    Article  Google Scholar 

  5. E.A. de Souza Neto, D. Peric, D.R.J. Owen, Computational Methods for Plasticity: Theory and Applications (Wiley, West Sussex, 2008)

    Book  Google Scholar 

  6. S. Gautam, S. Balijepalli, G.C. Rutledge, Molecular simulations of the interlamellar phase in polymers: effect of chain tilt. Macromolecules 33 (24), 9136–9145 (2000)

    Article  Google Scholar 

  7. I.L. Hay, A. Keller, Polymer deformation in terms of spherulites. Kolloid-Z. Z. für Polym. 204 (1–2), 43–74 (1965)

    Article  Google Scholar 

  8. B.J. Lee, A.S. Argon, D.M. Parks, S. Ahzi, Z. Bartczak, Simulation of large strain plastic deformation and texture evolution in high density polyethylene. Polymer 34 (17), 3555–3575 (1993)

    Article  Google Scholar 

  9. L. Lin, A.S. Argon, Structure and plastic deformation of polyethylene. J. Mater. Sci. 29 (2), 294–323 (1994)

    Article  Google Scholar 

  10. H.E. Oktay, E. Gürses, Modeling of spherulite microstructures in semicrystalline polymers. Mech. Mater 90, 83–101 (2015)

    Article  Google Scholar 

  11. E.F. Oleinik, Plasticity of semicrystalline flexible-chain polymers at the microscopic and mesoscopic levels. Polym. Sci. Ser. C 45 (1), 17–117 (2003)

    MathSciNet  Google Scholar 

  12. D.M. Parks, S. Ahzi, Polycrystalline plastic deformation and texture evolution for crystals lacking five independent slip systems. J. Mech. Phys. Solids 38 (5) 701–724 (1990)

    Article  MATH  Google Scholar 

  13. J. Teixeira-Pinto, C. Nadot-Martin, F. Touchard, M. Gueguen, S. Castagnet, Towards the size estimation of a representative elementary domain in semi-crystalline polymers. Mech. Mater. 95, 239–247 (2016)

    Article  Google Scholar 

  14. M. Uchida, N. Tada, Micro-, meso- to macroscopic modeling of deformation behavior of semi-crystalline polymer. Int. J. Plast. 49, 164–184 (2013)

    Article  Google Scholar 

  15. J.A.W. Van Dommelen, D.M. Parks, M.C. Boyce, W.A.M. Brekelmans, F.P.T. Baaijens, Micromechanical modeling of intraspherulitic deformation of semicrystalline polymers. Polymer 44 (19), 6089–6101 (2003)

    Article  Google Scholar 

  16. J.A.W. Van Dommelen, D.M. Parks, M.C. Boyce, W.A.M. Brekelmans, F.P.T. Baaijens, Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers. J. Mech. Phys. Solids 51 (3), 519–541 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Grant No. 111M646.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan Gürses .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Oktay, H.E., Gürses, E. (2016). Modeling of a Three-Dimensional Spherulite Microstructure in Semicrystalline Polymers. In: Karasözen, B., Manguoğlu, M., Tezer-Sezgin, M., Göktepe, S., Uğur, Ö. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2015. Lecture Notes in Computational Science and Engineering, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-319-39929-4_55

Download citation

Publish with us

Policies and ethics