Skip to main content

Discrete Lie Derivative

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2015

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 112))

  • 1536 Accesses

Abstract

Convection is an important transport mechanism in physics. Especially, in fluid dynamics at high Reynolds numbers this term dominates. Modern mimetic discretization methods consider physical variables as differential k-forms and their discrete analogues as k-cochains. Convection, in this parlance, is represented by the Lie derivative, \(\mathcal{L}_{X}\). In this paper we design reduction operators, \(\mathcal{R}\) from differential forms to cochains and define a discrete Lie derivative, L X which acts on cochains such that the commutation relation \(\mathcal{R}\mathcal{L}_{X} = \mathsf{L}_{X}\mathcal{R}\) holds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The vector space \(T_{p}(\mathcal{M})\) and \(T_{p}^{{\ast}}(\mathcal{M})\) are ismorphic, but there is no natural isomorphism. One way to associate vectors v to covectors α is by means of the metric tensor: α i  = g ij v j. With this association we have v ♭ = α and α ♯ = v. By construction the musical operators are metric-dependent.

References

  1. P. Bochev, J. Hyman, Principles of mimetic discretizations of differential operators, in Compatible Spatial Discretizations, ed. by D. Arnold, P. Bochev, R. Nicolaides, M. Shashkov. The IMA Volumes in Mathematics and Its Applications, vol. 42 (Springer, New York, 2006), pp. 89–119

    Google Scholar 

  2. J. Bonelle, A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESIAM: Math. Model. Numer. Anal. 48 (2), 553–581 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bossavit, Extrusion, contraction: their discretization via Whitney forms. COMPEL 22 (3), 470–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bossavit, in Applied Differential Geometry (2005). http://butler.cc.tut.fi/~bossavit/BackupICM/Compendium.html

  5. P. Cantin, A. Ern, Vertex-based compatible discrete operator schemes on polyhedral meshes for advection-diffusion equations, HAL Id: hal-01141290. https://hal.archives-ouvertes.fr/hal-00141290v2, to appear in Comput. Methods Appl. Math. 2016

  6. M. Desbrun, A.N. Hirani, M. Leok, J.E. Marsden, Discrete exterior calculus (2005). Arxiv preprint math/0508341

    Google Scholar 

  7. Flanders, Differential Forms with Applications to the Physical Sciences (Dover books, New York, 1963)

    Google Scholar 

  8. H. Heumann, R. Hiptmair, K. Li, J. Xu, Fully discrete semi-Lagrangian methods for advection of differential forms. BIT Numer. Math. 52, 981–1007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Kreeft, M. Gerritsma, Mixed mimetic spectral element methods for Stokes flow: a pointwise divergence-free solution. J. Comput. Phys. 240, 284–309 (2013)

    Article  MathSciNet  Google Scholar 

  10. J. Kreeft, A. Palha, M. Gerritsma, Mimetic framework on curvilinear quadrilaterals of arbitrary order (2011). arXiv:1111.4304

    Google Scholar 

  11. A. McInerney, First Steps in Differential Geometry – Riemann, Contact, Symplectic (Springer, New York/Dordrecht/Heidelberg/London, 2013)

    Book  MATH  Google Scholar 

  12. P. Mullen, A. McKenzie, D. Pavlov, L. Durant, Y. Tong, E. Kanso, J.E. Marsden, M. Desbrun, Discrete Lie advection of differential forms. Found. Comput. Math. 11 (2), 131–149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Palha, P.P. Rebelo, M. Gerritsma, Mimetic spectral element advection. Lect. Notes Comput. Sci. Eng. 95, 325–335 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Robidoux, S. Steinberg, A discrete vector calculus in tensor grids. Comput. Methods Appl. Math. 1, 1–44 (2011)

    MathSciNet  MATH  Google Scholar 

  15. L.W. Tu, An Introduction to Manifolds (Springer, New York/Dordrecht/Heidelberg/London, 2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Gerritsma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gerritsma, M., Kunnen, J., de Heij, B. (2016). Discrete Lie Derivative. In: Karasözen, B., Manguoğlu, M., Tezer-Sezgin, M., Göktepe, S., Uğur, Ö. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2015. Lecture Notes in Computational Science and Engineering, vol 112. Springer, Cham. https://doi.org/10.1007/978-3-319-39929-4_61

Download citation

Publish with us

Policies and ethics