Skip to main content

Program Size Complexity of Correction Grammars in the Ershov Hierarchy

  • Conference paper
  • First Online:
Pursuit of the Universal (CiE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9709))

Included in the following conference series:

Abstract

A general correction grammar for a language L is a program g that, for each \((x,t)\in \mathbb {N} ^2\), issues a yes or no (where when \(t=0\), the answer is always no) which is g’s t-th approximation in answering “\(x{\in } L?\)”; moreover, g’s sequence of approximations for a given x is required to converge after finitely many mind-changes. The set of correction grammars can be transfinitely stratified based on O, Kleene’s system of notation for constructive ordinals. For \(u\in O\), a u-correction grammar’s mind changes have to fit a count-down process from ordinal notation u; these u-correction grammars capture precisely the \(\varSigma _u^{-1}\) sets in Ershov’s hierarchy of sets for \(\varDelta _2^0\). Herein we study the relative succinctness between these classes of correction grammars. Example: Given u and v, transfinite elements of O with \(u<_ov\) (Kleene’s ordering on O), for each \(\emptyset ^{(2)}\)-computable \(H:\mathbb {N} \rightarrow \mathbb {N} \), there is a v-correction grammar \(i_v\) for a finite (alternatively, a co-finite) set A such that the smallest u-correction grammar for A is \({>}H({i_{v}})\). We also exhibit relative succinctness progressions in these systems of grammars and study the “information-theoretic” underpinnings of relative succinctness. Along the way, we verify and improve slightly a 1972 conjecture of Meyer and Bagchi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more discussion, see [6].

  2. 2.

    A Dollop of Standard Terminology: \(W_i\) is the i-th c.e. set, where i codes a program for generating or for accepting \(W_i\) [30]. \(\langle \cdot ,\cdot \rangle \) is a pairing function, i.e., a computable isomorphism from \(\mathbb {N} \times \mathbb {N} \) to \(\mathbb {N} \) [30], where \(\mathbb {N} \) = the natural numbers. For \(A\subseteq \mathbb {N} \), the A -computable (respectively, partial A-computable) functions are the total (respectively, partial) functions over \(\mathbb {N} \) that are computable relative to oracle A. \(W_i^A\) is the i-th A-c.e. set, where i codes a relativized program that, with oracle A, generates or accepts \(W_i^A\) [30]. For each \(k\in \mathbb {N} \), let \(A^{(k)}\) be the k-th jump [30] of A, i.e.: \(A^{(0)}=A\) and . Thus, \(\emptyset ^{(1)}=\) the halting problem, \(\emptyset ^{(2)}=\) the jump of \(\emptyset ^{(1)}\), etc. For \(A\subseteq \mathbb {N} \), \(\overline{A}=\mathbb {N}-A\). Any unexplained terminology below is from [30].

  3. 3.

    For each \(k\in \mathbb {N} \), the system of \(\underline{k}\)-correction grammars turns out to be equivalent to the system of k-fold correction grammars introduced above.

  4. 4.

    Algorithmic counting-down from constructive ordinals has been used, for example, in: computability theory [1, 7, 11], proof theory [29, 38], term rewriting [4, 40], and computational learning theory [15].

  5. 5.

    \(\langle W_p^u \rangle _{p\in \mathbb {N}}\)’s acceptability provides s-m-n and recursion theorems that are needed in some of our proofs.

    Let w be an O-notation for \(\omega \). While our w-c.e. sets are precisely \(\varSigma _{w}^{-1}\), they are distinct from the well known omega-c.e. sets [37] (each of which has a computable approximation analogous to an w-c.e. set except the number of mind changes is bounded by some computable function). The omega-c.e. sets are in \(\varDelta _{w}^{-1}\subsetneq \varSigma _w^{-1}\).

  6. 6.

    Meyer and Bagchi’s conjecture had \(s_A\) as a computable size measure and .

  7. 7.

    Another dollop of terminology.For partial function \(\psi , ~\psi (x){\mathclose {\downarrow }}\) means that \(\psi \) is defined on x and \(\psi (x) {\mathclose {\uparrow }}\) means that \(\psi \) is not defined on x. Let \(\langle \varphi ^A_p \rangle _{p\in \mathbb {N}}\) be an acceptable programming system for the A-computable partial functions over \(\mathbb {N} \). For this \(\varphi ^A\) we have (i) the s-1-1 theorem for \(\varphi ^A\) : There is a computable \(s:\mathbb {N} ^2\rightarrow \mathbb {N} \) such that, for each pxy: \(\varphi _{s(p,x)}^A(y) = \varphi _p^A(\langle x,y \rangle )\); and (ii) the Kleene parametric recursion theorem for \(\varphi ^A\) : There is a computable \(r:\mathbb {N} ^2\rightarrow \mathbb {N} \) such that, for each pxy: \(\varphi _{r(p,x)}^A(y) = \varphi _p^A(\langle r(p,x),y \rangle )\). (AB) double m-reduces [35] to (CD) (written: \((A,B)\le _m(C,D)\)) if and only if there is an computable f such that, for each x, \([x\in A\Leftrightarrow f(x)\in C\) and \(x\in B\Leftrightarrow f(x)\in D]\); such an f witnesses the reduction.

  8. 8.

    One may wonder why \(\langle \!\langle u \text { and } v \in O \rangle \!\rangle \) (or the same thing but with ‘settled’ in place of ‘\(\in O\)’) is in the conclusion of Theorem 8. The simple answer is that \(\emptyset ^{(2)}\) is not a strong enough oracle to remove either one from inside the \(\langle \!\langle \cdots \rangle \!\rangle \) in the conclusion.

References

  1. Ash, C., Knight, J.: Recursive structures and Eshov’s hierarchy. Math. Logic Q. 42, 461–468 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blum, M.: On the size of machines. Inf. Control 11, 257–265 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borodin, A.: Computational complexity: Theory and practice. In: Aho, A.V. (ed.) Currents in the Theory of Computing. Prentice-Hall, Englewood Cliffs (1973)

    Google Scholar 

  4. Buchholz, W.: Proof-theoretic analysis of termination proofs. Ann. Pure Appl. Logic 75, 57–65 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burgin, M.: Grammars with prohibition and human-computer interaction. In: Proceedings of the Business and Industry Simulation Symposium, pp. 143–147. Society for Modeling and Simulation International (2005)

    Google Scholar 

  6. Carlucci, L., Case, J., Jain, S.: Learning correction grammars. J. Symb. Logic 74, 489–516 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Case, J., Jain, S.: Rice and Rice-Shapiro theorems for transfinite correction grammars. Math. Logic Q. 57(5), 504–516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constable, R.: Subrecursive programming languages II: on program size. J. Comput. Syst. Sci. 5, 315–334 (1971)

    Article  MATH  Google Scholar 

  9. Craig, W.: On axiomatizability within a system. J. Symb. Logic 18, 30–32 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  10. Drumm, E.: Extensions to blum’s size results in subrecursive formalisms. Master’s thesis, University of Toronto (1970)

    Google Scholar 

  11. Epstein, R.L., Haas, R., Kramer, R.L.: Hierarchies of sets and degrees below \(\mathbf{0}^{\prime }\). In: Lerman, M., Schmerl, J.H., Soare, R.I. (eds.) Logic Year 1979–80. Lecture Notes in Mathematics, vol. 859, pp. 32–48. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  12. Ershov, Y.L.: A hierarchy of sets. I. Algebra Logic 7, 25–43 (1968)

    Article  MATH  Google Scholar 

  13. Ershov, Y.L.: A hierarchy of sets II. Algebra Logic 7, 212–284 (1968)

    Article  MathSciNet  Google Scholar 

  14. Ershov, Y.L.: A hierarchy of sets III. Algebra Logic 9, 20–31 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Freivalds, R., Smith, C.: On the role of procrastination in machine learning. Inf. Comput. 107(2), 237–271 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hartmanis, J.: On the succinctness of different representations of languages. SIAM J. Comput. 9, 114–120 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hartmanis, J.: On Gödel speed-up and succinctness of language representations. Theor. Comput. Sci. 26, 335–342 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hay, L.: Rice theorems for d.r.e. sets. Can. J. Math 27, 352–365 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hay, L.: On the recursion-theoretic complexity of relative succinctness of representations of languages. Inf. Control 52, 2–7 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hopcroft, J., Ullman, J.: Introduction to Automata Theory Languages and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  21. Kleene, S.C.: On notation for ordinal numbers. J. Symb. Logic 3, 150–155 (1938)

    Article  MATH  Google Scholar 

  22. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  23. Mendelson, E.: Introduction to Mathematical Logic, 5th edn. Chapman & Hall, New York (2009)

    MATH  Google Scholar 

  24. Meyer, A.: Program size in restricted programming languages. Inf. Control 21, 382–394 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meyer, A., Bagchi, A.: Program size and economy of description. In: Proceedings of the 4th Annual ACM Symposium on Theory of Computing, pp. 183–186 (1972)

    Google Scholar 

  26. Meyer, A., Fischer, M.: Economy of description by automata, grammars and formal systems. In: Proceedings of the IEEE 12th Annual Symposium on Switching and Automata Theory, pp. 42–51 (1971)

    Google Scholar 

  27. Meyer, A., Ritchie, D.: The complexity of loop programs. In: Proceedings of the 22nd National ACM Conference, pp. 465–469. Thomas Book Co. (1967)

    Google Scholar 

  28. Péter, R.: Recursive Functions. Academic Press, New York (1967)

    Google Scholar 

  29. Rathjen, M.: The realm of ordinal analysis. In: Cooper, S., Truss, J. (eds.) Sets and Proofs. London Mathematical Society Lecture Note Series, vol. 258, pp. 219–279. Cambridge University Press, Cambridge (1999)

    Chapter  Google Scholar 

  30. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967). Reprinted by MIT Press, 1987

    MATH  Google Scholar 

  31. Royer, J., Case, J.: Subrecursive Programming Systems: Complexity & Succinctness. Monograph in Programming Theoretical Computer Science. Birkhäuser, Boston (1994). See www.cis.udel.edu/~case/RC94Errata.pdf for corrected errata

  32. Sacks, G.: Degrees of Unsolvability. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  33. Schmidt, E., Szymanski, T.: Succinctness of descriptions of ambiguous context-free languages. Inf. Control 32, 547–553 (1976)

    MATH  Google Scholar 

  34. Simpson, S.: Subsystems of Second Order Arithmetic, 2nd edn. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  35. Smullyan, R.: Theory of Formal Systems. Annals of Mathematics Studies, vol. 47. Princeton University Press, Princeton (1961)

    Book  MATH  Google Scholar 

  36. Soare, R.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)

    Book  MATH  Google Scholar 

  37. Soare, R.: Turing oracle machines, online computing, and three displacements in computability theory. Ann. Pure Appl. Logic 160, 368–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Takeuti, G.: Proof Theory. Studies in Logic and the Foundations of Mathematics, vol. 81, 2nd edn. North-Holland, Amsterdam (1987)

    MATH  Google Scholar 

  39. Valiant, L.: Relative complexity of checking and evaluating. Inf. Process. Lett. 5, 20–23 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  40. Weiermann, A.: Proving termination for term rewriting systems. In: Börger, E., Jäger, G., Büning, H., Richter, M. (eds.) CSL 1991. LNCS, vol. 626, pp. 419–428. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

Download references

Acknowledgments

Thanks to Frank Stephan for alerting us to our earlier blunder of not noticing the need for even/odd cases in Theorem 6. Grant support was received by J. Case from NSF grant CCR-0208616, and by J. Royer from NSF grants CCR-0098198 and CCF-1319769.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Royer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Case, J., Royer, J.S. (2016). Program Size Complexity of Correction Grammars in the Ershov Hierarchy. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds) Pursuit of the Universal. CiE 2016. Lecture Notes in Computer Science(), vol 9709. Springer, Cham. https://doi.org/10.1007/978-3-319-40189-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40189-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40188-1

  • Online ISBN: 978-3-319-40189-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics