Skip to main content

A Survey on Processing of Large-Scale 3D Point Cloud

  • Conference paper
  • First Online:
E-Learning and Games (Edutainment 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9654))

Abstract

This paper provides a comprehensive overview of the state-of-the-art for processing large-scale 3D point cloud based on optical acquisition. We first summarize the general pipeline of point cloud processing, ranging from filtering to the final reconstruction, and give further detailed introduction. On this basis we give a general insight over the previous and latest methods applying LIDAR and remote sensing techniques as well as Kinect on analysis techniques, including urban environment and cluttered indoor scene. We also focus on the various approaches of 3D laser scenes scanning. The goal of the paper is to provide a comprehensive understanding on the point cloud reconstruction methods based on 3D laser scanning techniques, and make forecasts for future research issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Conference on Robotics and Automation, vol. 47, pp. 1–4 (2011)

    Google Scholar 

  2. Chen, J., Bautembach, D., Izadi, S.: Scalable real-time volumetric surface reconstruction. ACM Trans. Graph. (TOG) 32(4), 113 (2013)

    MATH  Google Scholar 

  3. Sohn, G., Dowman, I.J.: Terrain surface reconstruction by the use of tetrahedron model with the MDL criterion. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 34(3/A), 336–344 (2002)

    Google Scholar 

  4. Brovelli, M.A., Cannata, M., Longoni, U.M.: Managing and processing LIDAR data within GRASS. In: Proceedings of the GRASS Users Conference, vol. 29, September 2002

    Google Scholar 

  5. Sithole, G., Vosselman, G.: Filtering of airborne laser scanner data based on segmented point clouds. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 36(Part 3), W19 (2005)

    Google Scholar 

  6. Kim, K., Kim, J.: Dynamic displacement measurement of a vibratory object using a terrestrial laser scanner. Measur. Sci. Technol. 26(4), 45002–45012 (2015)

    Article  Google Scholar 

  7. Gumhold, S., Wang, X., MacLeod, R.: Feature extraction from point clouds. In: Proceedings of 10th International Meshing Roundtable, vol. 2001, October 2001

    Google Scholar 

  8. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3212–3217. IEEE, May 2009

    Google Scholar 

  9. Rabbani, T., van Den Heuvel, F., Vosselmann, G.: Segmentation of point clouds using smoothness constraint. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 36(5), 248–253 (2006)

    Google Scholar 

  10. Sappa, A.D., Devy, M.: Fast range image segmentation by an edge detection strategy. In: Third International Conference on 3-D Digital Imaging and Modeling, Proceedings, pp. 292–299. IEEE (2001)

    Google Scholar 

  11. Byun, J., Na, K.I., Seo, B.S., et al.: Drivable road detection with 3D point clouds based on the MRF for intelligent vehicle. In: Mejias, L., Corke, P., Roberts, J. (eds.) Field and Service Robotics. STAR, vol. 105, pp. 49–60. Springer, Heidelberg (2015)

    Google Scholar 

  12. Volk, R., Stengel, J., Schultmann, F.: Building information modeling (BIM) for existing buildings — literature review and future needs. Autom. Constr. 38(5), 109–127 (2014)

    Article  Google Scholar 

  13. Xiang, R., Wang, R.: Range image segmentation based on split-merge clustering. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 614–617. IEEE, August 2004

    Google Scholar 

  14. Vosselman, G.: Advanced point cloud processing. In: Photogrammetric Week, vol. 9, pp. 137–146 (2009)

    Google Scholar 

  15. Huang, H., Li, D., Zhang, H., Ascher, U., Cohen-Or, D.: ACM Trans. Graph. 28, 176 (2009)

    Article  Google Scholar 

  16. Miao, Y., Diaz-Gutierrez, P., Pajarola, R., Gopi, M., Feng, J.: In: IEEE SMI, vol. 28 (2009)

    Google Scholar 

  17. Öztireli, A.C., Guennebaud, G., Gross, M.: Comput. Graph. Forum 28, 493 (2009)

    Article  Google Scholar 

  18. Huang, H., Wu, S., Gong, M., Cohen-Or, D., Ascher, U., Zhang, H.R.: Edge-aware point set resampling. ACM Trans. Graph. (TOG) 32(1), 9 (2013)

    Article  MATH  Google Scholar 

  19. Lafarge, F., Keriven, R., Brédif, M., Vu, H.: A hybrid multi-view stereo algorithm for modeling urban scenes. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 35(1) (2013)

    Google Scholar 

  20. Yu, J., Turk, G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. (TOG) 32(1), 5 (2013)

    Article  MATH  Google Scholar 

  21. Saftly, W., Baes, M., Camps, P.: Hierarchical octree and kd tree grids for 3D radiative transfer simulations (2013). arXiv preprint arXiv:1311.0705

  22. Díaz-Más, L., Madrid-Cuevas, F.J., Muñoz-Salinas, R., Carmona-Poyato, A., Medina-Carnicer, R.: An octree-based method for shape from inconsistent silhouettes. Pattern Recogn. 45(9), 3245–3255 (2012)

    Article  Google Scholar 

  23. Rutzinger, M., Elberink, S.O., Pu, S., Vosselman, G.: Automatic extraction of vertical walls from mobile and airborne laser scanning data. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. 38(Part 3), W8 (2009)

    Google Scholar 

  24. Poullis, C., You, S.: Automatic reconstruction of cities from remote sensor data. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2775–2782. IEEE, June 2009

    Google Scholar 

  25. Zhou, Q.Y., Neumann, U.: 2.5D dual contouring: a robust approach to creating building models from aerial lidar point clouds. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision –ECCV 2010. LNCS, vol. 6313, pp. 115–128. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Zheng, Q., Sharf, A., Wan, G., Li, Y., Mitra, N.J., Cohen-Or, D., Chen, B.: Non-local scan consolidation for 3D urban scenes. ACM Trans. Graph.-TOG 29(4), 94 (2010)

    Google Scholar 

  27. Fu, W., Zhang, L., Li, H., Zhang, X., Wu, D.: Efficient 3D Reconstruction for urban scenes. In: Huang, D.-S., Bevilacqua, V., Figueroa, J.C., Premaratne, P. (eds.) ICIC 2013. LNCS, vol. 7995, pp. 546–555. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Lafarge, F., Mallet, C.: Creating large-scale city models from 3D-point clouds: a robust approach with hybrid representation. Int. J. Comput. Vis. 99(1), 69–85 (2012)

    Article  MathSciNet  Google Scholar 

  29. Müller, P., Zeng, G., Wonka, P., Van Gool, L.: Image-based procedural modeling of facades. ACM Trans. Graph. 26(3), 85 (2007)

    Article  Google Scholar 

  30. Nan, L., Sharf, A., Zhang, H., Cohen-Or, D., Chen, B.: SmartBoxes for interactive urban reconstruction. ACM Trans. Graph. (TOG) 29(4), 93 (2010)

    Article  Google Scholar 

  31. Lin, H., Gao, J., Zhou, Y., Lu, G., Ye, M., Zhang, C., Liu, L., Yang, R.: Semantic decomposition and reconstruction of residential scenes from LiDAR data. In: ACM Transactions on Graphics, Proceedings of SIGGRAPH 2013, vol. 32, no. 4 (2013)

    Google Scholar 

  32. Zhou, Q.Y., Neumann, U.: A streaming framework for seamless building reconstruction from large-scale aerial lidar data. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2759–2766. IEEE, June 2009

    Google Scholar 

  33. Secord, J., Zakhor, A.: Tree detection in urban regions using aerial lidar and image data. Geosci. Remote Sens. Lett. IEEE 4(2), 196–200 (2007)

    Article  Google Scholar 

  34. Vanegas, C.A., Aliaga, D.G., Benes, B.: Automatic extraction of manhattan-world building masses from 3D laser range scans. IEEE Trans. Vis. Comput. Graph. 18(10), 1627–1637 (2012)

    Article  Google Scholar 

  35. Matei, B.C., Sawhney, H.S., Samarasekera, S., Kim, J., Kumar, R.: Building segmentation for densely built urban regions using aerial lidar data. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE, June 2008

    Google Scholar 

  36. Coughlan, J.M., Yuille, A.L.: The Manhattan world assumption: regularities in scene statistics which enable Bayesian inference. In: NIPS, pp. 845–851, December 2000

    Google Scholar 

  37. Verma, V., Kumar, R., Hsu, S.: 3D building detection and modeling from aerial lidar data. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2213–2220. IEEE (2006)

    Google Scholar 

  38. Lafarge, F., Descombes, X., Zerubia, J., Pierrot-Deseilligny, M.: Building reconstruction from a single DEM. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE, June 2008. (You, S., Hu, J., Neumann, U., Fox, P.: ICCSA, p. 579 (2003))

    Google Scholar 

  39. Zebedin, L., Bauer, J., Karner, K., Bischof, H.: Fusion of feature- and area-based information for urban buildings modeling from aerial imagery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 873–886. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  40. Tse, R., Gold, C., Kidner, D.: Using the delaunay triangulation/voronoi diagram to extract building information from raw lidar data. In: 4th International Symposium on Voronoi Diagrams in Science and Engineering, ISVD 2007, pp. 222–229. IEEE, July 2007. (Toshev, A., Mordohai, P., Taskar, B.: IEEE CVPR, p. 398 (2010))

    Google Scholar 

  41. Xu, H., Gossett, N., Chen, B.: Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graph. (TOG) 26(4), 19 (2007)

    Article  Google Scholar 

  42. Li, H., Zhang, X., Jaeger, M., Constant, T.: Segmentation of forest terrain laser scan data. In: Proceedings of the 9th ACM SIGGRAPH Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 47–54. ACM, December 2010

    Google Scholar 

  43. Nan, L., Xie, K., Sharf, A.: A search-classify approach for cluttered indoor scene understanding. ACM Trans. Graph. (TOG) 31(6), 137 (2012)

    Article  Google Scholar 

  44. Hedau, V., Hoiem, D., Forsyth, D.: Thinking inside the box: using appearance models and context based on room geometry. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 224–237. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  45. Silberman, N., Fergus, R.: Indoor scene segmentation using a structured light sensor. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 601–608. IEEE, November 2011

    Google Scholar 

  46. Lee, D.C., Gupta, A., Hebert, M., Kanade, T.: Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In: NIPS, vol. 1, no. 2, p. 3, November 2010

    Google Scholar 

  47. Gupta, A., Efros, A.A., Hebert, M.: Blocks world revisited: image understanding using qualitative geometry and mechanics. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 482–496. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  48. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., Cheng, Z.Q.: Style-content separation by anisotropic part scales. ACM Trans. Graph. (TOG) 29(6), 184 (2010)

    Article  Google Scholar 

  49. Mitra, N.J., Flöry, S., Ovsjanikov, M., Gelfand, N., Guibas, L.J., Pottmann, H.: Dynamic geometry registration. In: Symposium on Geometry Processing, pp. 173–182, July 2007

    Google Scholar 

  50. Xu, K., Zheng, H., Zhang, H., Cohen-Or, D., Liu, L., Xiong, Y.: Photo-inspired model-driven 3D object modeling. In: ACM Transactions on Graphics (TOG), vol. 30, no. 4, p. 80. ACM, August 2011

    Google Scholar 

  51. Xiang, Y., Savarese, S.: Estimating the aspect layout of object categories. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3410–3417. IEEE, June 2012

    Google Scholar 

  52. Zheng, Y., Chen, X., Cheng, M.M., Zhou, K., Hu, S.M., Mitra, N.J.: Interactive images: cuboid proxies for smart image manipulation. ACM Trans. Graph. (TOG) 31(4), 99 (2012)

    Google Scholar 

  53. Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. In: ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 438–446. ACM, July 2002

    Google Scholar 

  54. Kim, Y. M., Mitra, N.J., Huang, Q., Guibas, L.: Guided real - time scanning of indoor objects. In: Computer Graphics Forum, vol. 32, no. 7, pp. 177–186, October 2013

    Google Scholar 

  55. Thrun, S., Wegbreit, B.: Shape from symmetry. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1824–1831. IEEE, October 2005

    Google Scholar 

  56. Mitra, N.J., Pauly, M., Wand, M., Ceylan, D.: Symmetry in 3D geometry: extraction and applications. In: Computer Graphics Forum. Blackwell Publishing Ltd., Hoboken, February 2013

    Google Scholar 

  57. Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point - cloud shape detection. In: Computer Graphics Forum, vol. 26, no. 2, pp. 214–226. Blackwell Publishing Ltd., Hoboken, June 2007

    Google Scholar 

  58. Jain, A., Thormählen, T., Ritschel, T., Seidel, H.P.: Exploring shape variations by 3D - model decomposition and part - based recombination. In: Computer Graphics Forum, vol. 31, no. 2pt3, pp. 631–640. Blackwell Publishing Ltd., Hoboken, May 2012

    Google Scholar 

  59. Sinha, S.N., Steedly, D., Szeliski, R., Agrawala, M., Pollefeys, M.: Interactive 3D architectural modeling from unordered photo collections. In: ACM Transactions on Graphics (TOG), vol. 27, no. 5, p. 159. ACM, December 2008

    Google Scholar 

  60. Schnabel, R., Degener, P., Klein, R.: Completion and reconstruction with primitive shapes. In: Computer Graphics Forum, vol. 28, no. 2, pp. 503–512. Blackwell Publishing Ltd., Hoboken, April 2009

    Google Scholar 

  61. Demisse, G.G., Borrmann, D., Nüchter, A.: Interpreting thermal 3D models of indoor environments for energy efficiency. J. Intell. Robot. Syst. 77(1), 55–72 (2015)

    Article  Google Scholar 

  62. Anguelov, D., Taskarf, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., Ng, A.: Discriminative learning of markov random fields for segmentation of 3D scan data. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 169–176. IEEE, June 2005

    Google Scholar 

  63. Recognition of 3D point clouds in urban environments. In: Computer Vision. IEEE (2009)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National High-Tech Research and Development Program of China (863 Program) with No. 2015AA016402, and in part by National Natural Science Foundation of China with Nos. 61571439, 61561003,61372190, and 61271431.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiliang Meng or Xiaopeng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, X., Meng, W., Guo, J., Zhang, X. (2016). A Survey on Processing of Large-Scale 3D Point Cloud. In: El Rhalibi, A., Tian, F., Pan, Z., Liu, B. (eds) E-Learning and Games. Edutainment 2016. Lecture Notes in Computer Science(), vol 9654. Springer, Cham. https://doi.org/10.1007/978-3-319-40259-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40259-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40258-1

  • Online ISBN: 978-3-319-40259-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics