Skip to main content

ARDock: A Web-AR Based Real-Time Tangible Edugame for Molecular Docking

  • Conference paper
  • First Online:
E-Learning and Games (Edutainment 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9654))

Abstract

Molecular docking is increasingly considered as a key tool for lead discovery of structure-based drug design. While huge ligand-receptor combinations, intangible microcosmic molecular world and complex docking scoring are the major challenges for modern molecular docking. In this paper, we present an edugame called ARDock, which is a web-based and interactive molecular docking game. The web-based feature allows multiple participants to engage in the game and provides solutions to complex scientific problems. Augmented reality is imported and consequently molecular docking process becomes tangible. The relative positions of two molecules are instantly updated with the users’ operation, enabling the spatial locating capabilities of humans. The optimized scoring function is proposed to reduce the computation complexity, and the message-oriented middleware facilitates real-time communication between the browsers and the server. The overall framework and detailed designs are illustrated. Some combination strategies make this edugame more interesting, which in return can attract more users and enhance their continuous participation. Sufficient user evaluations validate the usability of this game. This work is a step to promote the popularization of molecular docking knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moreno-Ger, P., Burgos, D., Martínez-Ortiz, I., Sierra, J.L., Fernández-Manjón, B.: Educational game design for online education. Comput. Hum. Behav. 24, 2530–2540 (2008)

    Article  Google Scholar 

  2. Amon, T.: Simulations and the future of learning: an innovative (and perhaps revolutionary) approach to e-Learning. J. Educ. Technol. Soc. 7, 149–150 (2004)

    Google Scholar 

  3. Prensky, M.: Digital game-based learning. Comput. Entertain. (CIE) 1, 1–22 (2003)

    Article  Google Scholar 

  4. Tang, Y.T., Marshall, G.R.: Virtual screening for lead discovery. Drug Des. Dis. 1–22 (2011). Springer

    Google Scholar 

  5. Ewing, T.J., Makino, S., Skillman, I.D., Kuntz, I.D.: DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput.-Aided Mol. Des. 15, 411–428 (2001)

    Article  Google Scholar 

  6. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009)

    Article  Google Scholar 

  7. Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, L.L., Frye, W.T., Pollard, J.L.: Banks: glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004)

    Article  Google Scholar 

  8. Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen, M., Leaver-Fay, A., Baker, D., Popović, Z.: Predicting protein structures with a multiplayer online game. Nature 466, 756–760 (2010)

    Article  Google Scholar 

  9. Mukesh, K.: Rakesh: Molecular docking: a review. Int. J. Res. Ayurveda Pharm 2, 1746–1751 (2011)

    Google Scholar 

  10. Bortolato, A., Fanton, M., Mason, J.S., Moro, S.: Molecular docking methodologies. Biomol. Simul. 924, 339–360 (2013)

    Article  Google Scholar 

  11. Sliwoski, G., Kothiwale, S., Meiler, J., Lowe, E.W.: Computational methods in drug discovery. Pharmacol. Rev. 66, 334–395 (2014)

    Article  Google Scholar 

  12. Shoichet, B.K., McGovern, S.L., Wei, B., Irwin, J.J.: Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 6, 439–446 (2002)

    Article  Google Scholar 

  13. Thomsen, R., Christensen, M.H.: MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49, 3315–3321 (2006)

    Article  Google Scholar 

  14. Gu, J., Yang, X., Kang, L., Wu, J., Wang, X.: MoDock: a multi-objective strategy improves the accuracy for molecular docking. Algorithms Mol. Biol: AMB 10(8), 1 (2015)

    Google Scholar 

  15. Gil-Redondo, R., Klett, J., Gago, F., Morreale, A.: gCOMBINE: a graphical user interface to perform structure-based comparative binding energy (COMBINE) analysis on a set of ligand-receptor complexes. Proteins: Struct. Funct. Bioinf. 78, 162–172 (2010)

    Article  Google Scholar 

  16. Levine, D., Facello, M., Hallstrom, P., Reeder, G., Walenz, B., Stevens, F.: Stalk: an interactive system for virtual molecular docking. Comput. Sci. Eng. 4, 55–65 (1997)

    Article  Google Scholar 

  17. Lee, Y.-G., Lyons, K.W.: Smoothing haptic interaction using molecular force calculations. Comput. Aided Des. 36, 75–90 (2004)

    Article  Google Scholar 

  18. Lai-Yuen, S.K., Lee, Y.-S.: Interactive computer-aided design for molecular docking and assembly. Comput.-Aided Des. Appl. 3, 701–709 (2006)

    Google Scholar 

  19. Gillet, A., Sanner, M., Stoffler, D., Olson, A.: Tangible augmented interfaces for structural molecular biology. Comput. Graph. Appl. IEEE 25, 13–17 (2005)

    Article  Google Scholar 

  20. Copolo, C.E., Hounshell, P.B.: Using three-dimensional models to teach molecular structures in high school chemistry. J. Sci. Educ. Technol. 4, 295–305 (1995)

    Article  Google Scholar 

  21. Li, H., Leung, K.-S., Nakane, T., Wong, M.-H.: iview: an interactive WebGL visualizer for protein-ligand complex. BMC Bioinform. 15(56), 1 (2014)

    Article  Google Scholar 

  22. Li, H., Leung, K.-S., Chan, C.H., Cheung, H.L., Wong, M.-H.: iSyn: WebGL-based interactive de novo drug design. In: IEEE, pp. 302–307 (2014)

    Google Scholar 

  23. Klopfer, E., Sheldon, J.: Augmenting your own reality: student authoring of science-based augmented reality games. New Dir. Youth Dev. 2010, 85–94 (2010)

    Article  Google Scholar 

  24. Eve, S.: Augmenting phenomenology: using augmented reality to aid archaeological phenomenology in the landscape. J. Archaeol. Method Theor. 19, 582–600 (2012)

    Article  Google Scholar 

  25. Ibáñez, M.B., Di Serio, Á., Villarán, D., Kloos, C.D.: Experimenting with electromagnetism using augmented reality: impact on flow student experience and educational effectiveness. Comput. Educ. 71, 1–13 (2014)

    Article  Google Scholar 

  26. Murcko, M.A.: Computational methods to predict binding free energy in ligand-receptor complexes. J. Med. Chem. 38, 4953–4967 (1995)

    Article  Google Scholar 

  27. Huey, R., Goodsell, D.S., Morris, G.M., Olson, A.J.: Grid-based hydrogen bond potentials with improved directionality. Lett. Drug. Des. Dis. 1, 178–183 (2004)

    Article  Google Scholar 

  28. Ruth, H., Morris, G.M., Olson, A.J., Goodsell, D.S.: A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 28, 1145–1152 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Natural Science Foundation of China (Grant No: 61332017 and 61300133), Open Research Funding Program of KLGIS (Grant No: KLGIS2015A05), the Fundamental Research Funds for the Central Universities (Grant No: 222201514331), the Opening Project of Shanghai Key Laboratory of New Drug Design (Grant No: 14DZ2272500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoqi He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

He, G. et al. (2016). ARDock: A Web-AR Based Real-Time Tangible Edugame for Molecular Docking. In: El Rhalibi, A., Tian, F., Pan, Z., Liu, B. (eds) E-Learning and Games. Edutainment 2016. Lecture Notes in Computer Science(), vol 9654. Springer, Cham. https://doi.org/10.1007/978-3-319-40259-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40259-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40258-1

  • Online ISBN: 978-3-319-40259-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics