Skip to main content

Research on Virtual Training System in Aerospace Based on Interactive Environment

  • Conference paper
  • First Online:
Book cover E-Learning and Games (Edutainment 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9654))

Abstract

There are precedents both at home and abroad to use virtual reality technology in the field of aerospace industries. The purpose is to improve the training efficiency of the device assembly and make the operators have more intuitive understanding of the safety and the logic of the assemble process. The virtual training system was presented on Zspace environment, which has strong sense of interaction and immersion. After confirming the requirements, designers determine the conceptual frame and iterative prototype of the system. At last, the article proposed the interactive features in terms of software and hardware under different requirements by giving an application example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 姜学智, 李忠华.国内外虚拟现实技术的研究现状. 辽宁工程技术大学学报 (02) (2004)

    Google Scholar 

  2. A survey on virtual reality. Science in China (Series F: Information Sciences), 03, 348–400 (2009)

    Google Scholar 

  3. Zeng, J.C., Yu, Z.H.: Virtual Reality Technology and Its Application. Tsinghua University Press, Beijing (1996). (in Chinese)

    Google Scholar 

  4. 黄悦.浅谈虚拟现实技术. 科技信息(学术研究), (32), 203–205 (2008)

    Google Scholar 

  5. 徐娟.基于虚拟现实技术的铁道车辆运行仿真系统研究. 长沙: 中南大学 (2009)

    Google Scholar 

  6. Yuan, X.B., Yang, S.X.: Virtual assembly with biologically inspired intelligence. IEEE Trans. Syst. Man Cybern. C 33, 159–167 (2003)

    Article  Google Scholar 

  7. Smith, S.S.F., Smith, G., Liao, X.: Automatic stable assembly sequence generation and evaluation. J Manuf. Syst. 20, 225–235 (2001)

    Article  Google Scholar 

  8. 夏平均, 陈朋, 郎跃东, 姚英学, 唐文彦. 虚拟装配技术的研究综述. 系统仿真学报 08, 2267–2272 (2009)

    Google Scholar 

  9. Prendinger, H., Ishizuka, M.: Symmetric multimodality revisited: unveiling users’ physiological activity. IEEE Trans. Ind. Electron. 54, 692–698 (2007)

    Article  Google Scholar 

  10. Zhang, J.W., Knoll, A.: A two-arm situated artificial communicator for human-robot cooperative assembly. IEEE Trans. Ind. Electron. 50, 651–658 (2003)

    Article  Google Scholar 

  11. Rodriguez, A., Basanez, L., Celaya, E.: A relational positioning methodology for robot task specification and execution. IEEE Trans. Robot. 24, 600–611 (2008)

    Article  Google Scholar 

  12. Chueh, M., Yeung, Y.L.W.A., Lei, K.P.C., et al.: Following controller for autonomous mobile robots using behavioral cues. IEEE Trans. Ind. Electron. 55, 3124–3132 (2008)

    Article  Google Scholar 

  13. Bedny, G., Karwowski, W., Bedny, M.: The principle of unity of cognition and behavior: implications of activity theory for the study of human work. Int. J. Cognit. Ergon. 5, 401–420 (2001)

    Article  Google Scholar 

  14. Kulyk, O.A., Kosara, R., Urquiza, J., Wassink, I.: Human-centered aspects. In: Kerren, A., Ebert, A., Meyer, J. (eds.) GI-Dagstuhl Research Seminar 2007. LNCS, vol. 4417, pp. 13–75. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. 崔舜喆.三维图像投影装置.中国专利, 96110114.8, 16 November 1997

    Google Scholar 

  16. Stam, J.: Stable fluids. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128. ACM Press, Los Angeles, California, USA (1999)

    Google Scholar 

  17. Real World vs. zSpace — Focus and Convergence. http://developer.zspace.com/docs/aesthetics/#Understanding_zSpace_Aesthetics/Focus_Convergence.php?TocPath=_____5

  18. Baldonado, M., Chang, C.-C.K., Gravano, L., Paepcke, A.: The stanford digital library metadata architecture. Int. J. Digit. Libr. 1, 108–121 (1997)

    Article  Google Scholar 

  19. Bruce, K.B., Cardelli, L., Pierce, B.C.: Comparing object encodings. In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 108–438. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  20. van Leeuwen, J. (ed.): Computer Science Today. LNCS, vol. 1000. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  21. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

You, F., Tan, Y., Feng, J., Li, L., Lin, J., Liu, X. (2016). Research on Virtual Training System in Aerospace Based on Interactive Environment. In: El Rhalibi, A., Tian, F., Pan, Z., Liu, B. (eds) E-Learning and Games. Edutainment 2016. Lecture Notes in Computer Science(), vol 9654. Springer, Cham. https://doi.org/10.1007/978-3-319-40259-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40259-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40258-1

  • Online ISBN: 978-3-319-40259-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics