Abstract
An interesting and important problem of how similar and/or dissimilar voting procedures (social choice functions) are dealt with. We extend our previous qualitative type analysis based on rough sets theory which make it possible to partition the set of voting procedures considered into some subsets within which the voting procedures are indistinguishable, i.e. (very) similar. Then, we propose an extension of those analyses towards a quantitative evaluation via the use of degrees of similarity and dissimilarity, not necessarily metrics and dual (in the sense of summing up to 1). We consider the amendment, Copeland, Dodgson, max-min, plurality, Borda, approval, runoff, and Nanson, voting procedures, and the Condorcet winner, Condorcet loser, majority winner, monotonicity, weak Pareto winner, consistency, and heritage criteria. The satisfaction or dissatisfaction of the particular criteria by the particular voting procedures are represented as binary vectors. We use the Jaccard–Needham, Dice, Correlation, Yule, Russell–Rao, Sockal–Michener, Rodgers–Tanimoto, and Kulczyński measures of similarity and dissimilarity. This makes it possible to gain much insight into the similarity/dissimilarity of voting procedures.
To Ron, Professor Ronald R. Yager, whose highly original and ground breaking ideas, and vision, have shaped and changed research interests of so many of us for years.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Voting in multi-agent systems. Comput. J. 49(2), 156–170 (2006)
Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Formalization of a voting protocol for virtual organizations. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M., Wooldridge, M. (eds.) Proceedings of 4th AAMAS05, pp. 373–380. ACM (2005)
Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Voting in online deliberative assemblies. In: Gardner, A., Sartor, G. (eds) Proceedings of 10th ICAIL, pp. 195204. ACM (2005)
Arrow, K.J., Sen, A.K., Suzumura, K (eds.): Handbook of Social Choice and Welfare, vol. 1. Elsevier (2002)
Kelly, J.S.: Social Choice Theory. Springer, Berlin (1988)
Plott, C.R.: Axiomatic social choice theory: an overview and interpretation. Am. J. Polit. Sci. 20, 511–596 (1976)
Schwartz, T.: The Logic of Collective Choice. Columbia University Press, New York (1986)
Arrow, K.: A difficulty in the concept of social welfare. J. Polit. Econ. 58(4), 328346 (1950)
Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica 41(4), 587601 (1973)
Kelly, J.S.: Arrow Impossibility Theorems. Academic Press, New York (1978)
May, K.: A set of independent, necessary and sufficient conditions for simple majority decision. Econometrica 20(4), 680684 (1952)
Nurmi, H.: Comparing Voting Systems. D. Reidel, Dordrecht (1987)
Riker, W.H.: Liberalism against Populism. W. H. Freeman, San Francisco (1982)
Satterthwaite, M.A.: Strategy-proofness and arrows conditions: existence and correspondence theorems for voting procedures and social welfare functions. J. Econ. Theory, 10, 187217 (1975)
Baigent, M.: Metric rationalisation of social choice functions according to principles of social choice. Math. Soc. Sci. 13(1), 5965 (1987)
Elkind, E., Faliszewski, P., Slinko, A.: On the role of distances in defining voting rules. In: van der Hoek, W., Kaminka, G.A., Lesprance, Y., Luck, M., Sen, S., (eds.) Proceedings of 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 375–382 (2010)
McCabe-Dansted, J.C., Slinko, A.: Exploratory analysis of similarities between social choice rules. Group Decis. Negot. 15(1), 77–107 (2006)
Richelson, J.: A comparative analysis of social choice functions I, II, III: a summary. Behav. Sci. 24, 355 (1979)
Fedrizzi, M., Kacprzyk, J., Nurmi, H.: How different are social choice functions: a rough sets approach. Qual. Quant. 30, 87–99 (1996)
Pawlak, Z.: Rough sets. Int. J. Inf. Comput. Sci. 11, 341–356 (1982)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)
Pawlak, Z., Skowron, A.: 2007a. Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (1988)
Kacprzyk, J., Nurmi, H., Zadrożny, S.: Towards a comprehensive similarity analysis of voting procedures using rough sets and similarity measures. In: Skowron, A., Suraj, Z. (eds.) Rough Sets and Intelligent Systems—Professor Zdzislaw Pawlak in Memoriam, vol. 1, pp. 359–380. Springer, Heidelberg and New York (2013)
Tubbs, J.D.: A note on binary template matching. Pattern Recogn. 22(4), 359–365 (1989)
Choi, S.-S., Cha, S.-H., Tappert, ChC: A survey of binary similarity and distance measures. J. Syst. Cybern. Inf. 8(1), 43–48 (2010)
Kacprzyk, J., Zadrożny, S.: Towards a general and unified characterization of individual and collective choice functions under fuzzy and nonfuzzy preferences and majority via the ordered weighted average operators. Int. J. Intell. Syst. 24(1), 4–26 (2009)
Kacprzyk, J., Zadrożny, S.: Towards human consistent data driven decision support systems using verbalization of data mining results via linguistic data summaries. Bull. Pol. Acad. Sci., Tech. Sci. 58(3), 359–370 (2010)
Yager, R.R.: On ordered weighted averaging operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. SMC-18, 183–190 (1988)
Yager, R.R., Kacprzyk, J. (eds.): The Ordered Weighted Averaging Operators: Theory and Applications. Kluwer, Boston (1997)
Yager, R.R., Kacprzyk, J., Beliakov, G. (eds): Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice. Springer (2011)
Polkowski, L.: A set theory for rough sets. Toward a formal calculus of vague statements. Fund. Inform. 71(1), 49–61 (2006)
Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177(1), 28–40 (2007b)
Peters, J.F., Skowron, A., Stepaniuk, J.: Rough sets: foundations and perspectives. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 7787–7797. Springer, Berlin (2009)
Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)
Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Inf. Sci. 177, 41–73 (2007c)
Yao, Y.Y., Zhao, Y.: Discernibility matrix simplification for constructing attribute reducts. Inf. Sci. 179, 867–882 (2009)
Straffin, P.D.: Topics in the Theory of Voting. Birkhäuser, Boston (1980)
Fishburn, P.C.: Condorcet social choice functions. SIAM J. Appl. Math. 33, 469–489 (1977)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Kacprzyk, J., Nurmi, H., Zadrożny, S. (2017). Using Similarity and Dissimilarity Measures of Binary Patterns for the Comparison of Voting Procedures. In: Kacprzyk, J., Filev, D., Beliakov, G. (eds) Granular, Soft and Fuzzy Approaches for Intelligent Systems. Studies in Fuzziness and Soft Computing, vol 344. Springer, Cham. https://doi.org/10.1007/978-3-319-40314-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-40314-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40312-0
Online ISBN: 978-3-319-40314-4
eBook Packages: EngineeringEngineering (R0)