Abstract
Motivated by tampering attacks in practice, two different but related security notions, termed complete non-malleability and related-key attack security, have been proposed recently. In this work, we study their relations and present the first public key encryption scheme that is secure in both notions under standard assumptions. Moreover, by exploiting the technique for achieving complete non-malleability, we give a practical scheme for the related-key attack security. Precisely, the scheme is proven secure against polynomial functions of bounded degree d under a newly introduced hardness assumption called d-modified extended decisional bilinear Diffie-Hellman assumption. Since the schemes are constructed in a direct way instead of relying on the non-interactive zero knowledge proof or signature techniques, they not only achieve the strong security notions but also have better performances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that for any element \(pk'\) in public key space \(\mathbb {G}\) of our construction, there exists a corresponding private key \(sk'\in \mathbb {Z}_{p}\) satisfying \(pk'=g^{sk'}\), so all elements of \(\mathbb {G}\) are admissible public keys. Hence, the value \(H(g^{sk'}, C'_{1}, C'_{2})\) can be always computed using \(pk'\) even without knowing \(sk'\).
References
Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003)
Barbosa, M., Farshim, P.: Relations among notions of complete non-malleability: indistinguishability characterisation and efficient construction without random oracles. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 145–163. Springer, Heidelberg (2010)
Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic devices: Theory, practice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012)
Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 486–503. Springer, Heidelberg (2011)
Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)
Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)
Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier: IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012)
Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)
Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)
Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)
Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)
Cui, H., Mu, Y., Au, M.H.: Public-key encryption resilient to linear related-key attacks. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M. (eds.) SecureComm 2013. LNICST, vol. 127, pp. 182–196. Springer, Heidelberg (2013)
Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)
Fischlin, M.: Completely non-malleable schemes. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 779–790. Springer, Heidelberg (2005)
Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431. Springer, Heidelberg (2000)
Fujisaki, E., Xagawa, K.: Efficient RKA-secure KEM and IBE schemes against invertible functions. In: Lauter, K., RodrÃguez-HenrÃquez, F. (eds.) LatinCrypt 2015. LNCS, vol. 9230, pp. 3–20. Springer, Heidelberg (2015)
Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)
Hutter, M., Schmidt, J.-M., Plos, T.: RFID and its vulnerability to faults. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 363–379. Springer, Heidelberg (2008)
Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 451–480. Springer, Heidelberg (2015)
Jia, D., Li, B., Lu, X., Mei, Q.: Related key secure PKE from hash proof systems. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 250–265. Springer, Heidelberg (2014)
Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)
Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-secure PKE from identity-based techniques. In: CT-RSA 2010, San Francisco, CA, USA, March 1–5, 2010, pp. 132–147 (2010)
Libert, B., Yung, M.: Efficient completely non-malleable public key encryption. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 127–139. Springer, Heidelberg (2010)
Lu, X., Li, B., Jia, D.: Related-key security for hybrid encryption. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 19–32. Springer, Heidelberg (2014)
Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17–20, 2008, pp. 187–196 (2008)
Qin, B., Liu, S., Yuen, T.H., Deng, R.H., Chen, K.: Continuous non-malleable key derivation and its application to related-key security. In: Proceedings of the PKC 2015, Gaithersburg, MD, USA, March 30 - April 1, 2015, pp. 557–578 (2015)
Sepahi, R., Steinfeld, R., Pieprzyk, J.: Lattice-based completely non-malleable public-key encryption in the standard model. Des. Codes Crypt. 71(2), 293–313 (2014)
Ventre, C., Visconti, I.: Completely non-malleable encryption revisited. In: PKC 2008, Barcelona, Spain, March 9–12, 2008, pp. 65–84 (2008)
Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)
Wee, H.: Public key encryption against related key attacks. In: PKC 2012, Darmstadt, Germany, May 21–23, 2012, pp. 262–279 (2012)
Yuen, T.H., Zhang, C., Chow, S.S.M., Yiu, S.: Related randomness attacks for public key cryptosystems. In: ASIACCS 2015, Singapore, April 14–17, 2015, pp. 215–223 (2015)
Acknowledgements
The authors would like to thank all anonymous reviewers for their valuable comments. The work is supported by the Major State Basic Research Development Program (No. 2013CB338004), the Natural Science Foundation of China (No. 61472250) and the Scientific Research Foundation of Ministry of Education of China and China Mobile (No. MCM20150301).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Sun, SF., Parampalli, U., Yuen, T.H., Yu, Y., Gu, D. (2016). Efficient Completely Non-Malleable and RKA Secure Public Key Encryptions. In: Liu, J., Steinfeld, R. (eds) Information Security and Privacy. ACISP 2016. Lecture Notes in Computer Science(), vol 9723. Springer, Cham. https://doi.org/10.1007/978-3-319-40367-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-40367-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40366-3
Online ISBN: 978-3-319-40367-0
eBook Packages: Computer ScienceComputer Science (R0)