Skip to main content

Efficient Completely Non-Malleable and RKA Secure Public Key Encryptions

  • Conference paper
  • First Online:
Book cover Information Security and Privacy (ACISP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9723))

Included in the following conference series:

Abstract

Motivated by tampering attacks in practice, two different but related security notions, termed complete non-malleability and related-key attack security, have been proposed recently. In this work, we study their relations and present the first public key encryption scheme that is secure in both notions under standard assumptions. Moreover, by exploiting the technique for achieving complete non-malleability, we give a practical scheme for the related-key attack security. Precisely, the scheme is proven secure against polynomial functions of bounded degree d under a newly introduced hardness assumption called d-modified extended decisional bilinear Diffie-Hellman assumption. Since the schemes are constructed in a direct way instead of relying on the non-interactive zero knowledge proof or signature techniques, they not only achieve the strong security notions but also have better performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that for any element \(pk'\) in public key space \(\mathbb {G}\) of our construction, there exists a corresponding private key \(sk'\in \mathbb {Z}_{p}\) satisfying \(pk'=g^{sk'}\), so all elements of \(\mathbb {G}\) are admissible public keys. Hence, the value \(H(g^{sk'}, C'_{1}, C'_{2})\) can be always computed using \(pk'\) even without knowing \(sk'\).

References

  1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Barbosa, M., Farshim, P.: Relations among notions of complete non-malleability: indistinguishability characterisation and efficient construction without random oracles. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 145–163. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic devices: Theory, practice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012)

    Article  Google Scholar 

  4. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 486–503. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)

    Google Scholar 

  7. Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier: IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  9. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  11. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Cui, H., Mu, Y., Au, M.H.: Public-key encryption resilient to linear related-key attacks. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M. (eds.) SecureComm 2013. LNICST, vol. 127, pp. 182–196. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fischlin, M.: Completely non-malleable schemes. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 779–790. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Fujisaki, E., Xagawa, K.: Efficient RKA-secure KEM and IBE schemes against invertible functions. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LatinCrypt 2015. LNCS, vol. 9230, pp. 3–20. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  17. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Hutter, M., Schmidt, J.-M., Plos, T.: RFID and its vulnerability to faults. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 363–379. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 451–480. Springer, Heidelberg (2015)

    Google Scholar 

  20. Jia, D., Li, B., Lu, X., Mei, Q.: Related key secure PKE from hash proof systems. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 250–265. Springer, Heidelberg (2014)

    Google Scholar 

  21. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-secure PKE from identity-based techniques. In: CT-RSA 2010, San Francisco, CA, USA, March 1–5, 2010, pp. 132–147 (2010)

    Google Scholar 

  23. Libert, B., Yung, M.: Efficient completely non-malleable public key encryption. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 127–139. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Lu, X., Li, B., Jia, D.: Related-key security for hybrid encryption. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 19–32. Springer, Heidelberg (2014)

    Google Scholar 

  25. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17–20, 2008, pp. 187–196 (2008)

    Google Scholar 

  26. Qin, B., Liu, S., Yuen, T.H., Deng, R.H., Chen, K.: Continuous non-malleable key derivation and its application to related-key security. In: Proceedings of the PKC 2015, Gaithersburg, MD, USA, March 30 - April 1, 2015, pp. 557–578 (2015)

    Google Scholar 

  27. Sepahi, R., Steinfeld, R., Pieprzyk, J.: Lattice-based completely non-malleable public-key encryption in the standard model. Des. Codes Crypt. 71(2), 293–313 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ventre, C., Visconti, I.: Completely non-malleable encryption revisited. In: PKC 2008, Barcelona, Spain, March 9–12, 2008, pp. 65–84 (2008)

    Google Scholar 

  29. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  30. Wee, H.: Public key encryption against related key attacks. In: PKC 2012, Darmstadt, Germany, May 21–23, 2012, pp. 262–279 (2012)

    Google Scholar 

  31. Yuen, T.H., Zhang, C., Chow, S.S.M., Yiu, S.: Related randomness attacks for public key cryptosystems. In: ASIACCS 2015, Singapore, April 14–17, 2015, pp. 215–223 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank all anonymous reviewers for their valuable comments. The work is supported by the Major State Basic Research Development Program (No. 2013CB338004), the Natural Science Foundation of China (No. 61472250) and the Scientific Research Foundation of Ministry of Education of China and China Mobile (No. MCM20150301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawu Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sun, SF., Parampalli, U., Yuen, T.H., Yu, Y., Gu, D. (2016). Efficient Completely Non-Malleable and RKA Secure Public Key Encryptions. In: Liu, J., Steinfeld, R. (eds) Information Security and Privacy. ACISP 2016. Lecture Notes in Computer Science(), vol 9723. Springer, Cham. https://doi.org/10.1007/978-3-319-40367-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40367-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40366-3

  • Online ISBN: 978-3-319-40367-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics