Skip to main content

Two Genuine 3-Valued Paraconsistent Logics

  • Chapter
  • First Online:
Towards Paraconsistent Engineering

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 110))

  • 594 Accesses

Abstract

In this paper we present two genuine three-valued paraconsistent logics, i.e. logics obeying neither \(p, \lnot p \vdash q\) nor \(\vdash \lnot (p \wedge \lnot p)\). We study their basic properties and their relations with other paraconsistent logics, in particular da Costa’s paraconsistent logics C1 and its extension \(C1+\).

figure a

Dedicated to Jair Minoro Abe for his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In [11] we have used k+ because we were also examining the possibilities where the third value was undesignated, using the notation k–.

  2. 2.

    \(\copyright \) can be implication. In the present paper we are studying logics without implication, so we are comparing these logics with the fragment of C1 without implication.

References

  1. Asenjo, F.G.: A calculus of antinomies. Notre Dame J. Formal Logic 7, 103–105 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arieli, O., Avron, A.: Three-valued paraconsistent propositional logics. In: Beziau, J.-Y., Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent Logic, pp. 91–129. Springer, New Delhi (2015)

    Google Scholar 

  3. Becker, J.R.: Arenhart Liberating paraconsistency from contradictions. Log. Univers. 9, 523–545 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beziau, J.-Y.: Logiques construites suivant les méthodes de da Costa. Logique et Analyse 131–132, 259–272 (1990)

    MathSciNet  Google Scholar 

  5. Beziau, J.-Y.: Nouveaux résultats et nouveau regard sur la logique paraconsistante C1. Logique et Analyse 141–142, 45–48 (1993)

    MathSciNet  Google Scholar 

  6. Beziau, J.-Y.: Théorie législative de la négation pure. Logique et Analyse 147–148, 209–225 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Beziau, J.-Y.: What is paraconsistent logic?. In: Batens, D. et al. (eds.) Frontiers of Paraconsistent Logic, pp. 95–111. Research Studies Press, Baldock (2000)

    Google Scholar 

  8. Beziau, J.-Y.: Are paraconsistent negations negations?. In: Carnielli, W. et al. (eds.) Paraconsistency: The Logical Way to the Inconsistent, pp. 465–486. Marcel Dekker, New-York (2002)

    Google Scholar 

  9. Beziau, J.-Y.: Round squares are no contractions. In: Beziau, J.-Y., Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent Logic, pp. 39–55. Springer, New Delhi (2015)

    Google Scholar 

  10. Beziau, J.-Y.: Trivial dialetheism and the logic of paradox. Logic Logical Philos. 25, 51–56 (2016)

    Google Scholar 

  11. Beziau, J.-Y., Franschetto, A.: Strong paraconsistent three-valued logic. In: Beziau, J.-Y., Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent Logic, pp. 131–147. Springer, New Delhi (2015)

    Google Scholar 

  12. da Costa, N.C.A.: Calculs propositionnels pour les systèmes formels inconsistants. Cr. R. Acad Sc. Paris 257, 3790–3793 (1963)

    MATH  Google Scholar 

  13. da Costa, N.C.A., Guillaume, M.: Négations composées et Loi de Peirce dans les systèmes Cn. Portugalia Mathematica 24, 201–210 (1965)

    MATH  Google Scholar 

  14. D’Ottaviano, I.M.L., da Costa, N.C.A.: Sur un problème de Jaskowśki. Cr. R. Acad Sc. Paris 270, 1349–1353 (1970)

    MATH  Google Scholar 

  15. Humberstone, L.: Beziau’s translation paradox. Theoria 71, 138–181 (2005)

    Article  MathSciNet  Google Scholar 

  16. Kleene, S.: On a notation for ordinal numbers. J. Symbolic. Logic 3, 150–155 (1938)

    Article  MATH  Google Scholar 

  17. Łoś, J., Suszko, R.: Remarks on sentential logics. Indigationes Mathematicae 10, 177–183 (1958)

    Google Scholar 

  18. Łukasiewicz, J.: O logice trójwartościowej. Ruch Filozoficny 5, 170–171 (1920)

    Google Scholar 

  19. Marcos, J.: 8K solutions and semi-solutions to a problem of da Costa. Unpublished manuscript (2000)

    Google Scholar 

  20. Priest, G.: The logic of paradox. J. Philos. Logic 8, 219–241 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sette, A.M.: On the propositional calculus P1. Notas e comunicacões de matemática, 17, Recife (1971)

    Google Scholar 

  22. Urbas, I.: On Brazilian paraconsistent logics. Ph.D. Australian National University, Canberra (1987)

    Google Scholar 

  23. Urbas, I.: Paraconsistency and the C-systems of da Costa. Notre Dame J. Formal Logic 30, 583–597 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Urbas, I.: Paraconsistency. Studies in Soviet Thought 39, 343–354 (1989)

    Google Scholar 

Download references

Acknowledgments

This paper was written during a stay at University of Tel Aviv within the GeTFun exchange prorgram—Marie Curie project PIRSES-GA-2012-318986 funded by EU-FP7. Thanks to Arnon Avron for his useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Yves Beziau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beziau, JY. (2016). Two Genuine 3-Valued Paraconsistent Logics. In: Akama, S. (eds) Towards Paraconsistent Engineering. Intelligent Systems Reference Library, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-319-40418-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40418-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40417-2

  • Online ISBN: 978-3-319-40418-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics