Skip to main content

A Review on Rough Sets and Possible World Semantics for Modal Logics

  • Chapter
  • First Online:
Towards Paraconsistent Engineering

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 110))

  • 552 Accesses

Abstract

It is well known that rough set-based approximations of concepts and possible world semantics of modal logics are closely related. In this chapter, we review the relationships between two types of possible world semantic models, i.e., Kripke model and measure-based model, and two variation of rough sets, i.e., Pawlak’s rough set and variable precision rough set.

Dedicated to Jair Minoro Abe for his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balbiani, P., Iliev, P., Vakarelov, D.: A modal logic for pawlaks approximation spaces with rough cardinality \(n\). Fundamenta Informaticae, 83, 451E464 (2008)

    Google Scholar 

  2. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press (1980)

    Google Scholar 

  3. Greco, S., Matarazzo, B., Słowiński, R.: Rough set theory for multicriteria decision analysis. Eur. J. Oper. Res. 129, 1–47 (2002)

    Article  MATH  Google Scholar 

  4. Järvinen, J., Kondo, M., Kortelainen, J.: Logics from Galois connections. Int. J. Approximate Reasoning 49, 595 E606 (2008)

    Google Scholar 

  5. Kondo, M.: On the structure of generalized rough sets. Inf. Sci. 176, 589–E00 (2006)

    Google Scholar 

  6. Kripke, S.A.: Semantical analysis of modal logic I. Normal modal propositional calculi. Zeitschr. 1. math. Logik und Otundlagen d. Math. 9, 67–96 (1963)

    Google Scholar 

  7. Kudo, Y., Murai, T.: Approximation of concepts and reasoning based on rough sets. J. Japn. Soc. Artif. Intell. 22(5), 597–604 (2007) (in Japanese)

    Google Scholar 

  8. Kudo, Y., Murai, T., Akama, S.: A granularity-based framework of deduction, induction, and abduction. Int. J. Approximate Reasoning 50, 1215–1226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liau, C.J.: An overview of rough set semantics for modal and quantifier logics. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 8(1), 93–118 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liau, C.J.: Modal reasoning and rough set theory. In: Artificial Intelligence: Methodology, Systems, and Applications, LNCS, vol. 1480, pp. 317–30. Springer (2006)

    Google Scholar 

  11. Murai, T., Miyakoshi, M., Shimbo, M.: Measure-Based Semantics for Modal Logic. In: Fuzzy Logic : State of the Art, pp. 395–405. Kluwer (1993)

    Google Scholar 

  12. Murai, T., Miyakoshi, M., Shimbo, M.: A logical foundation of graded modal operators defined by fuzzy measures. In: Proceedings of 4th FUZZ-IEEE, pp. 151–156 (1995)

    Google Scholar 

  13. Orłowska, E. (ed.): Incomplete Information: Rough Set Analysis. Physica-Verlag, Springer (1998)

    MATH  Google Scholar 

  14. Pawlak, Z.: Rough Sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer (1991)

    Google Scholar 

  16. Pawlak, Z., Skowron, A.: Rough membership functions: a tool for reasoning with uncertainty. In: Algebraic Methods in Logic and In Computer Science, vol. 28. Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, Warszawa (1993)

    Google Scholar 

  17. Polkowski, L.: Rough sets: Mathematical Foundations. Advances in Soft Computing. Physica-Verlag (2002)

    Google Scholar 

  18. Ślȩzak, D., Ziarko, W.: The investigation of the Bayesian rough set model. Int. J. Approximate Reasoning 40, 81–91 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Thiele, H.: Generalizing the explicit concept of rough set on the basis of modal logic. In: Reusch, B., et al. (eds.) Computational Intelligence in Theory and Practice. Springer, Berlin (2001)

    Google Scholar 

  20. Yao, Y.Y.: Generalized rough set models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 286–318. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  21. Yao, Y.Y., Li, X.: Comparison of rough-set and interval-set models for uncertain reasoning. Fundamenta Informaticae 27(2–3), 289–298 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logics. Intell. Autom. Soft Comput. 2(2), 103–120 (1996)

    Google Scholar 

  23. Yao, Y.Y., Wang, S.K.M., Lin, T.Y.: A review of rough set models. In: Rough Sets and Data Mining, pp. 47–75. Kluwer (1997)

    Google Scholar 

  24. Zakowski, W.: Approximations in the space \((u,\pi )\). Demonstratio Mathematica 16, 761–769 (1983)

    MathSciNet  MATH  Google Scholar 

  25. Zhu, W.: Generalized rough sets based on relations. Inf. Sci. 177, 4997E5011 (2007)

    Google Scholar 

  26. Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46, 39–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Kudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kudo, Y., Murai, T., Akama, S. (2016). A Review on Rough Sets and Possible World Semantics for Modal Logics. In: Akama, S. (eds) Towards Paraconsistent Engineering. Intelligent Systems Reference Library, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-319-40418-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40418-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40417-2

  • Online ISBN: 978-3-319-40418-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics