Abstract
One of the great prospects of exascale computing is to simulate challenging highly complex multi-physics scenarios with different length and time scales. A modular approach re-using existing software for the single-physics model parts has great advantages regarding flexibility and software development costs. At the same time, it poses challenges in terms of numerical stability and parallel scalability. The coupling library preCICE provides communication, data mapping, and coupling numerics for surface-coupled multi-physics applications in a highly modular way. We recapitulate the numerical methods but focus particularly on their parallel implementation. The numerical results for an artificial coupling interface show a very small runtime of the coupling compared to typical solver runtimes and a good parallel scalability on a number of cores corresponding to a massively parallel simulation for an actual, coupled simulation. Further results for actual application scenarios from the field of fluid–structure–acoustic interactions are presented in the next chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
preCICE is licensed under LGPL3.
- 2.
- 3.
- 4.
We always refer to the number of processors per participant.
- 5.
For more details: https://www.lrz.de/services/compute/supermuc/systemdescription/.
- 6.
Optimizations of the memory requirements of IMVJ and RBF are possible and work in progress.
References
Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. ACM 12 (4), 547–560 (1965)
Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.6, Argonne National Laboratory (2015). http://www.mcs.anl.gov/petsc
de Boer, A., van Zuijlen, A., Bijl, H.: Comparison of conservative and consistent approaches for the coupling of non-matching meshes. Comput. Method. Appl. Mech. Eng. 197 (49–50), 4284–4297 (2008).
Buhmann, M.: Radial basis functions. Acta Numer. 9 (January 2000), 1–38 (2000)
Bungartz, H.J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., Uekermann, B.: preCICE – a fully parallel library for multi-physics surface coupling. Comput. Fliuds (2016)
Bungartz, H.J., Lindner, F., Mehl, M., Uekermann, B.: A plug-and-play coupling approach for parallel multi-field simulations. Comput. Mech. 55 (6), 1119–1129 (2015)
Deparis, S., Forti, D., Quarteroni, A.: A rescaled localized radial basis function interpolation on non-cartesian and nonconforming grids. SIAM J. Sci. Comput. 36 (6), A2745–A2762 (2014). http://dx.doi.org/10.1137/130947179
Fang, H.R., Saad, Y.: Two classes of multisecant methods for nonlinear acceleration. Numer. Linear Algebra 16, 197–221 (2008)
Gatzhammer, B.: Efficient and flexible partitioned simulation of fluid-structure interactions. Phd thesis, Technische Universität München (2014)
Keyes, D., McInnes, L.C., Woodward, C.S., Gropp, W., Myra, E., Pernice, M., Bell, J., Brown, J., Clo, A., Connors, J., Constantinescu, E., Estep, D., Evans, K., Farhat, C., Hakim, A., Hammond, G., Hansen, G., Hill, J., Isaac, T., Jiao, X., Jordan, K., Kaushik, D., Kaxiras, E., Koniges, A., Lee, K., Lott, A., Lu, Q., Magerlein, J., Maxwell, R., McCourt, M., Mehl, M., Pawloski, R., Randles, A., Reynolds, D., Riviere, B., Rüde, U., Scheibe, T., Shadid, J., Sheehan, B., Shephard, M., Siegel, A., Smith, B., Tang, X., Wilson, C., Wohlmuth, B.: Multiphysics simulations: challenges and opportunities. Int. J. High Perform. Comput. Appl. 27 (1), 4–83 (2012)
Lindner, F., Mehl, M., Scheufele, K., Uekermann, B.: A comparison of various quasi-Newton schemes for partitioned fluid-structure interaction. In: Proceedings of 6th International Conference on Computational Methods for Coupled Problems in Science and Engineering, Venice, pp. 1–12 (2015)
Loffeld, J., Woodward, C.: Considerations and the implementation and use of Anderson acceleration on parallel computers. In: Advances in the Mathematical Sciences: Research from the 2015 Association for Women in Mathematics Symposium. AWM Springer Series (2016)
Plimpton, S.J., Hendrickson, B., Stewart, J.R.: A parallel rendezvous algorithm for interpolation between multiple grids. J. Parallel Distrib. Comput. 64 (2), 266–276 (2004)
Shukaev, A.K.: A fully parallel process-to-process intercommunication technique for preCICE. Master’s thesis, Institut für Informatik, Technische Universität München (2015)
Slattery, S., Wilson, P., Pawlowski, R.: The data transfer kit: a geometric rendezvous-based tool for multiphysics data transfer. In: International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), pp. 5–9 (2013)
Smith, M.J., Cesnik, C.E.S., Hodges, D.H.: Evaluation of algorithms suitable for data transfer between noncontiguous meshes. J. Aerospace Eng. 13 (2), 52–58 (2000)
Uekermann, B., Bungartz, H.J., Gatzhammer, B., Mehl, M.: A parallel, black-box coupling for fluid-structure interaction. In: Idelsohn, S., Papadrakakis, M., Schrefler, B. (eds.) Computational Methods for Coupled Problems in Science and Engineering, COUPLED PROBLEMS 2013. Stanta Eulalia, Ibiza (2013). http://congress.cimne.com/coupled2013/proceedings/full/p559.pdf
Vierendeels, J., Degroote, J., Annerel, S., Haelterman, R.: Stability issues in partitioned FSI calculations. In: Bungartz, H.J., Mehl, M., Schäfer, M. (eds.) Fluid Structure Interaction II. Lecture Notes in Computational Science and Engineering, pp. 83–102. Springer, Berlin/Heidelberg (2010). http://link.springer.com/chapter/10.1007/978-3-642-14206-2_4
Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49 (4), 1715–1735 (Aug 2011). http://dx.doi.org/10.1137/10078356X
Yokota, R., Barba, L.A., Knepley, M.G.: PetRBF – a parallel O(N) algorithm for radial basis function interpolation with Gaussians. Comput. Method. Appl. Mech. Eng. 199 (25–28), 1793–1804 (2010).
Acknowledgements
The financial support of the priority program 1648 Software for Exascale Computing (www.sppexa.de) of the German Research Foundation and of the Institute for Advanced Study (www.tum-ias.de) of the Technical University of Munich as well as provided computing time on the SuperMUC at the Leibniz Supercomputing Centre, are thankfully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Bungartz, HJ., Lindner, F., Mehl, M., Scheufele, K., Shukaev, A., Uekermann, B. (2016). Partitioned Fluid–Structure–Acoustics Interaction on Distributed Data: Coupling via preCICE. In: Bungartz, HJ., Neumann, P., Nagel, W. (eds) Software for Exascale Computing - SPPEXA 2013-2015. Lecture Notes in Computational Science and Engineering, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-40528-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-40528-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40526-1
Online ISBN: 978-3-319-40528-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)