The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-40528-5 14 .

Performance Engineering and Energy Efficiency
of Building Blocks for Large, Sparse Eigenvalue
Computations on Heterogeneous
Supercomputers

Moritz Kreutzer, Jonas Thies, Andreas Pieper, Andreas Alvermann, Martin
Galgon, Melven Rhrig-Zoliner, Faisal Shahzad, Achim Basermann, Alan R.
Bishop, Holger Fehske, Georg Hager, Bruno Lang, and Gerhard Wellein

Abstract Numerous challenges have to be mastered as applications in scientific
computing are being developed for post-petascale parallel systems. While ample
parallelism is usually available in the numerical problems at hand, the efficient
use of supercomputer resources requires not only good scalability but also a ver-
ifiably effective use of resources on the core, the processor, and the accelerator
level. Furthermore, power dissipation and energy consumption are becoming fur-
ther optimization targets besides time to solution. Performance Engineering (PE)
is the pivotal strategy for developing effective parallel code on all levels of mod-
ern architectures. In this paper we report on the development and use of low-level
parallel building blocks in the GHOST library (“General, Hybrid, and Optimized
Sparse Toolkit”). We demonstrate the use of PE in optimizing a density of states
computation using the Kernel Polynomial Method, and show that reduction of run-
time and reduction of energy are literally the same goal in this case. We also give
a brief overview of the capabilities of GHOST and the applications in which it is
being used successfully.

M. Kreutzer, F. Shahzad, G. Hager, G. Wellein
Erlangen Regional Computingenter, Friedrich-Alexander-Univerait Erlangen-Nrnberg,
Erlangen, Germany, e-mafli r st . | ast @ au. de

A. Alvermann, A. Pieper, H. Fehske
Institute of Physics, Ernst-Moritz-Arndt-Univeratt Greifswald, Greifswald, Germany, e-mail:
| ast @hysi k. uni - grei f swal d. de

M. Galgon, B. Lang
Bergische Universit Wuppertal, Wuppertal, Germany, e-mail:
I'ast @mt h. uni - wuppertal . de

M. Rohrig-Zoliner, J. Thies, A. Basermann
German Aerospace Center (DLR), Simulation and Software Technology, Cologne, Germany,
e-mail:first.last @lr.de

A. R. Bishop
Theory, Simulation and Computation Directorate, Los Alamos National Laboratory, Los Alamos,
New Mexico, USA, e-mailarb@ anl . gov

first.last@fau.de
last@physik.uni-greifswald.de
last@math.uni-wuppertal.de
first.last@dlr.de
arb@lanl.gov

2 M. Kreutzer et al.

1 Introduction

The supercomputer architecture landscape has encountered dramatic changes in the
past decade. Heterogeneous architectures hosting different compute devices (CPU,
GPGPU, and Intel Xeon Phi) and systems runningcki’es or more are dominating

the Top500 top ter [32] since the year 2013. Since then, however, turnover in the top
ten has slowed down considerably. A new impetus is expected by the “Collaboration
of Oak Ridge, Argonne, and Livermore” (COR/E]J)/ith multi-100 Pflop/s systems

to be installed around 2018. These systems may feature high levels of thread paral-
lelism and multiple compute devices at the node level, and will exploit massive data
parallelism through SIMD/SIMT features at the core level. The SUMiwtchi-

tecture is an instructive example. State-of-the-art interconnect technologies will be
used to build clusters comprising3® 1P compute nodes.

The hardware architecture of the CORAL systems, which are part of the DOE
Exascale Computing Project, can be considered blueprints for the systems to be de-
ployed on the way to exascale computing and thus define the landscape for the de-
velopment of hardware-/energy-efficient, scalable, and sustainable software as well
as numerical algorithms. Additional constraints are set by the continuously increas-
ing power consumption and the expectation that mean time to failure (MTTF) will
steadily decrease. It is obvious that long-standing simulation software needs to be
completely re-designed or new codes need to be written from scratch. The project
“Equipping Sparse Solvers for Exascale” (Essﬁixyunded by the Priority Pro-
gramme “Software for Exascale Computing” (SPPEXA) of the German Research
Foundation (DFG) is such an endeavor in the field of sparse eigenvalue solvers.

The ESSEX project addresses the above challenges in a joint software co-design
effort involving all three fundamental layers of software development in computa-
tional science and engineering: basic building blocks, algorithms, and applications.
Energy efficiency and fault tolerance (FT) form vertical pillars forcing a strong inter-
action between the horizontal activities (see Elg. 1 for overall project organization).
The overarching goal of all activities is minimal time to solution. Thus, the project
is embedded in a structured holistic Performance Engineering (PE) process that de-
tects performance bottlenecks and guides optimization and parallelization strategies
across all activities.

In the first funding period (2013-2015) the ESSEX project has developed the
“Exascale enabled Sparse Solver Repository” (ESSR), which is accessible under a
BSD open source licen&e.

Theapplication layer has contributed various scalable matrix generation routines
for relevant quantum physics problems and has used the ESSR components to ad-

1 http://www.energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-
coral

2 https://www.olcf.ornl.gov/summit/

3 http://blogs.fau.de/essex

4 http://bitbucket.org/essex

Performance Engineering for sparse building blocks 3

—

Applications

Preconditioners

Algorithms

i

Fig. 1. Basic ESSEX project organization: The classic
boundaries of application, algorithms, and basic build-
L_J ingblocks tightly interact via a holistic performance en-
Holistic Performance Engineering gineering process.

Energy Efficiency

Building Blocks

vance research in the fields of graphene structures [26, 23] 24, 8] and topological
materials([22].

In the algorithms layer various classic, application-specific and novel eigen-
solvers have been implemented and reformulated in view of the holistic PE process.
A comprehensive survey on the activities in the algorithms layer (including FT) is
presented in [31]. There we also report on the software engineering process to allow
for concurrent development of software in all three layers.

Work performed in thévasic building block layer, which drives the holistic PE
process, is presented in this report.

2 Contribution

The building block layer in ESSEX is responsible for providing an easy to use but
still efficient infrastructure library (GHOST), which allows exploiting optimiza-
tion potential throughout all software layers. GHOST is an elaborate paralleliza-
tion framework based on the MPI+X model, capable of mastering the challenges of
complex node topologies (including ccNUMA awareness and node-level resource
management) and providing efficient data structures and tailored kernels. In partic-
ular the impact of data structures on heterogeneous performance is still underrated
in many projects. On top of GHOST we have defined an interface layer that can
be used by algorithms and application developers for flexible software development
(seel[31)).

In this work we illustrate selected accomplishments, which are representative
for the full project. We briefly present a SIMD/SIMT-friendly sparse matrix data
layout, which has been proposed by ESSEX and gives high performance across
all available HPC compute devices. As a sample application we choose the Kernel
Polynomial Method (KPM), which will first be used to revisit our model-driven PE
process. Then we demonstrate the impact of PE on improving the energy efficiency
on the single socket level. Using a coupled performance and energy model, we val-
idate these findings qualitatively and can conclude that the achieved performance
improvements for KPM directly correlate with energy savings.

Then we present a brief overview of the GHOST library and give an overview of
selected solvers that use GHOST in ESSEX. We finally demonstrate that sustained

4 M. Kreutzer et al.

Algorithm 1 Naive version of the KPM-DOS algorithm with corresponding BLAS
level 1 function calls. Note that the “swap” operation is not performed explicitly but
merely indicates the logical change of the role of th& vectors in the odd/even
iteration steps.
for r=0toR—1 do
[V) < [rand()
Initialization steps and computation g§, N1
for m=1toM/2 do
swap(w), |v))

) —H|V >spmv()
lu) < |u)—Dblv) >axpy()
W) o —|w) >scal ()
w) <« [w)+2aju) >axpy()
Nom < (VV) >nrR()
Nami1 < (WV) >dot ()
end for
end for

petascale performance on a large CPU-GPGPU cluster is #ueefss our very
challenging problem class of sparse linear algebra.

3 Holistic Performance Engineering driving energy efficiency on
the example of the Kernel Polynomial Method (KPM)

The KPM [35] is well established in quantum physics and chemistry. It is used for
determining the eigenvalue density (KPM-DOS) and spectral properties of sparse
matrices, exposing high optimization potential and the feasibility of petascale im-
plementations. In the following study the KPM is applied to a relevant problem
of quantum physics: the determination of electronic structure properties of a three-
dimensional topological insulator.

3.1 Performance Engineering for KPM

The naive version of the KPM as depicted in Algorittith 1 builds on several
BLAS [18] level 1 routines and the Sparse BLAS [7] leved @rmv (Sparse matrix-
vector multiplication) kernel. The computational intensities of all involved kernels
for the topological insulator application are summarized in Table 1. To classify the
behavior of a kernel on a compute architecture it is useful to correlate the computa-
tional intensity with the machine balance which is the flops/byte ratio of a machine
for data from main memory or, in other words, the ratio between peak performance
and peak memory bandwidth. It turns out that for each kernel in Table 1 the com-
putational intensity is smaller than the machine balance of any relevant HPC archi-

Performance Engineering for sparse building blocks 5

Kernel || spnv axpy scal nrng dot | KPM
Imax 0.317 0.167 0.188 0.250 0.250{ 0.295
Vinin.rel 59.6% 22.0% 7.3% 3.7% 7.3%| 100%

Table 1: Maximum computational intensitiggax in flops/byte and approximate
minimum relative share of overall data volume in the solegrdach kernel and the
full naive KPM-DOS implementation (Algorithiil 1) for the tological insulators
application.

tecture. Even very bandwidth-oriented vector architexgdike the NEC SX-ACE
with a theoretical machine balance of 1 byte/flop, fail tawdglenough data per cy-
cle from main memory to keep the floating point units busysTdiscrepancy only
gets more severe on standard multicore CPUs or GPGPUs.

The relative share of data volume assuming minimum datfictfaf each kernel
can also be seen in Talile 1. As all kernels are strongly baumgin memory band-
width, we can directly translate the relative data volumareh to relative runtime
shares if we assume optimal implementations of all kernmeds® excess data trans-
fers. Hence, thepnv is the dominating operation in the naive KPM-DOS solver.
This, together with the fact that BLAS level 1 routines ofteily very limited per-
formance optimization potential, necessitates a detaiadnination of this kernel.

3.1.1 Sparse matrix data format

Not only KPM-DOS but also many other sparse linear algelgardthms are dom-
inated by SpMV. This gave rise to intense research dealitlytive performance of
this operation. A common finding is that SpMV performancersgly depends on
the sparse matrix data format. In the past there was an ingdjieement that an op-
timal choice of sparse matrix data format strongly depemdfie compute architec-
ture used. Obviously, this poses obstacles especiallyeiadivent of heterogeneous
machines we are facing today. This led to several efforiggryo either identify
data formats that yield good performance on all relevaritigectures or to alter the
de facto standard format on CPUs (Compressed Sparse RoB8R)rt6 enable high
performance CSR SpMV kernels also on throughput-orientettitectures. The lat-
ter approach resulted in the development of ACSR [2], CSRpide [9,10], and
CSR5 [19]. The former approach was pursued by ESSEX, e.fl4inand led to
the proposition of SELL-G7 as a “catch-all” sparse matrix storage format for the
heterogeneous computing era. Although re-balancing thesemnatrix between het-
erogeneous devices at runtime is not in the scope of this vtgskobably is a wise
decision in view of the future to choose an architectureepehdent storage format
if it does not diminish the performance of CPU-only runs. BIEX we decided
for the SELL-Co storage format, which we will explain briefly in the follovgn
Moreover, our preference of SELL-G-over CSR will be justified.

SELL-C-o is a generalization of the Sliced ELLPACK [21] format. Theasge
matrix is cut into chunks where each chunk contains C matrivst with C being

6 M. Kreutzer et al.

o=4

12 13 14

I R R R A)

(a) (c)
va1=[3\s\4\9\5\10\6\0\1\7\2\0\12\15\13\16\14\0\17\11\15\0]
co1=[o\o\3\1\7\4\6\0\2\5\1\0\2\0\3\4\6\0\7\1\5\0] (d)

chunkptr = [0 | 8 \12\18\22]

Fig. 2: SELL-Co matrix construction. The SELL-2-4 matrix (b) is createdfrthe
source matrix (a), which includes row permutation accagdan(c). The SELL-Ce
data structure for this matrix is shown in (d).

a multiple of the architecture’s SIMD width. Within a churdd| rows are padded
with zeros up to the length of the longest row. Matrix valuad according column
indices are stored along jagged diagonals and chunk aftekcio avoid excessive
zero padding, it may be helpful to sastsuccessive matrix rowss(> C) by their
number of non-zeros before chunk assembly. In this casetlscolumn indices of
matrix entries have to be permuted accordingly. Big. 2 destnates the assembly of
a SELL-C-o matrix from an example matrix. In contrast to CSR, SIMD pssirg
is achieved along jagged diagonals of the matrix insteadws$r This enables effec-
tive vectorized processing for short rows (comparable teharter than the SIMD
width), and it enhances the vectorization efficiency of lemgws compared to CSR
due to the absence of a reduction operation.

Typically, even non-vectorized code yields optimal parfance for bandwidth-
bound kernels on a full multi-core CPU socket. However, aéiglegree of vector-
ization usually comes with higher energy efficiency. Hemeeused SELL-Cs for
our experiments. Even if no performance gain over CSR carxpected on a full
socket, we will demonstrate in Seci. 3.2 that SELLe@drns out to be beneficial in
terms of energy consumption. Due to the regular structutieeofopological insula-
tor system matrix, no row sorting has to be applied, ge= 1. The chunk height C
was set to 32.

3.1.2 Kernel fusion and blocking

The naive KPM-DOS implementation is strongly memory-boasdescribed in the
introduction to Seck.311. Thus, the most obvious way toe@hhigher performance
is to decrease the amount of data traffic.

As previously described in_[16], a simple and valid way to His tis to fuse
all involved kernels into a single tailored KPM-DOS kernalgorithm [2 shows
the KPM-DOS algorithm with all operations fused into a sengernel. Taking the

Performance Engineering for sparse building blocks 7

Algorithm 2 Enhanced version of the KPM-DOS algorithm using the augetent
SpMV kernel, which covers all operations chained by '&’.

for r=0toR—1 do
[v) « |rand()
Initialization and computation afo, N1
for m=1toM/2 do
swa(|w), |v))
[w) = 2a(H —b1)|V) — W) & Mam = (V[V) & Namy1 = (W|V)
end for
end for

Algorithm 3 Fully optimized version of the KPM-DOS algorithm combinikernel
fusion (see Algorithni]2) and vector blocking. Eaglis a vector ofR column-wise
dot products of two block vectors.

V) =1[V)o.r-1 > Assemble vector blocks
[W) 1= [W)o.r-1
|V) « |rand()

Initialization and computation qfip, ti1
for m=1toM/2 do

swa(|W). V)

W) = 2a(H —b1)|V) — W) & nam[:] = (V|V) & Noms1[] = (W|V)
end for

algorithmic optimization one step further, we can elim@tite outer loop by com-
bining all random initial states into a block of vectors amei@ate on vector blocks
in the fused kernel. The resulting fully optimized (i.e.séd and blocked) kernel
can be seen in Algorithin 3. Each of the proposed optimizatteps increases the
computational intensity of the KPM-DOS solver:

0.448E% R=1 (no blockin
69F F kerel fusion & 69F B (g)

Imax= 5575 ~0.295— ~{2459F _ .
max = 5am B vector blocking (L30/R— 24)B 2.459 |B= R = 32 (this work)
28755 R—

1)
Eventually, the fully optimized solver is decoupled fromimmemory bandwidth
on the Intel vy Bridge architecture as we have demonstriat&th].

3.2 Single-socket performance and energy analysis

3.2.1 Multi-core energy modeling

The usefulness of analytic models that describe the rurgingepower dissipation
of programs and the systems they run on is undisputed. Eveuch models are
often over-simplified, they can still predict and explainnpamportant properties
of hardware-software interaction. Bandwidth-based uppéiormance limits on the

8 M. Kreutzer et al.

CPU level have been successfully used for decades [5, 18nbdeling power
dissipation is more intricate. 10 [11] we have introducecamomenological power
and energy consumption model from which useful guidelinetife energy-optimal
operating point of a code (humber of active cores, clock dpeeuld be derived.
In the following we briefly review the model and its predictioas far as they are
relevant for the application case of KPM.

The model takes a high-level view of energy consumptiors &sisumed that the
CPU chip dissipates a constdraseline power Wp, which is defined as the power
at zero (extrapolated) clock speaty also contains contributions from cores in
idle or deep sleep state, and it may also comprise othermsystenponents whose
power dissipation is roughly constant. Every active coee, when executing in-
structions, contributes additiondynamic power, which depends on the clock speed.
The power dissipation atactive cores is assumed as

W =W+ (Wi f +Wef?)n. 2)

There is no cubic term iri since measurements on current multi-core CPUs show
that the dynamic power is at most quadraticfinThis is a consequence of the
automatic adaptation of supply voltage to clock speed ags®g by the processor
or the OS kernel [6]. Power and energy to solution are coeaday the program’s
runtime, which is work divided by performance Hfis the amount of work (e.g., in
flop/s) we assume the following model for the runtime:

_ F
~ min(nPy(f),Prax) '

wherePR, is the single-core (i.e., sequential) performance Byl is the maximum
performance as given by a bandwidth-based limit (e.g., @ndby the product of
arithmetic intensity and memory bandwidth if the memoreifdce is a potential
bottleneck). Assuming linear scalability up to a saturatoint is justified on cur-
rent multi-core designs if no other scaling impedimentsiagp generalPy will
depend strongly on the clock speed since the serial exectie is dominated by
intra-cache data transfers or in-core execution on mod&dwith deep cache
hierarchies. This is clearly described by our ECM perforaeamodel [[30]. The
energy to solution is thus

T(n, f) 3)

Wo+ (Wi f +Wof2)n
min (NPy(f), Pmax)

There are several immediate conclusions that can be drawm thiis model[[11].
Here we restrict ourselves to the case of a fixed clock sppe&ten,

E(n,f)=F- 4)

o If the performance saturates at some number of cogethis is the number of
active cores to use for minimal energy to solution.

e If the performance is linear in one must use all cores for minimal energy to
solution.

Performance Engineering for sparse building blocks 9

e Energy to solutionis inversely proportional to performanregardless of whether
the latter is saturated or not.

We consider the last of these conclusions to be the most Bangoone, since run-
time (i.e., inverse performance) is the only factor in whaskergy is linear. This
underlines that performance optimization is the pivotategy in energy reduction.

3.2.2 Measurements

In order to provide maximum insight into the connectionsigsn performance and
energy in a multi-core chip we use what we calf-plot, combining performance
in Gflop/s on thex axis with energy to solution in J on theaxis (see Fid.13). One
set of data points represents measurements for solvingdagixdlem with a vary-
ing number of active cores on the chip. In a Z-plot, horizblitees are “energy
iso-lines,” vertical lines are “performance iso-linegjtehyperbolas are “power iso-
lines” (doubling performance, i.e., cutting the runtimehaif, also halves energy).
If a program shows saturating performance with respect éontimber of cores,
the curve bends upward at the saturation point, indicatiagrnore resources (thus
more power) are used without a performance gain, leadingawigg energy to so-
lution. For scalable programs the curve is expected to sthpiflkeep falling if the
power model described in SeEt.3]2.1 holds. The Z-plot hadutther advantage
that lines of constant energy-delay product (energy totsmiumultiplied by pro-
gram runtime, EDP) are straight lines through the originsT$ convenient when
EDP is used as an alternative target metric instead of pteenyy.

All measurements shown in this section were performed omode (actually a
single socket with ten cores) of the “Emmy” cluster at RRZ&merising Intel lvy
Bridge (Xeon E5-2660v2; "IVB”) CPUs with 2.2 GHz base cloglegd and 32 GB
of RAM per socket. The clock frequency was set to 2.2 GHz, Tluirbo Mode”
was disabled. Energy measurements were done viditkev d- per f ctr tool
from the LIKWID tool suite [33]_1], leveraging Intel's on-ghRAPL infrastructure.

In Fig.[3 we show package-level energy and performance dathé naive im-
plementation of KPM (Algorithni]1) and the augmented and kéaicversions (Al-
gorithm[2 and Algorithmi13) on one IVB socket at a fixed basefieguency of
2.2 GHz. As expected from their low computational inteesit{see Tablg]l1 and
Sect[3.1.R), the naive and augmented variants show strfigrmance saturation
at about 5 and 6 cores, respectively. The augmented kewngles more cores for
saturation since it performs more work per byte transfefir@eh main memory. In
the inset we show the bandwidth-based performance limitsileded by multiply-
ing the maximum achievable memory bandwidth on the chip BB¥with the
respective computational intensity. The measured sai@rformance is only 6—
7% below this limit in both cases. Note that the maximum badtwwas obtained
using a read-only benchmarki(kwi d- bench | oad [34]) but the kernels do not
exhibit pure load characteristics. Depending on the foactf stored vs. loaded
data, the maximum bandwidth delivered to the IVB chip campdig more than
10%. The blocked variant does not suffer from a memory badihottleneck on

10 M. Kreutzer et al.

B naive SMT1 T 7 T -

OO naive SMT2
augmented SMTL 6000 4
augmented SMTR L 1
A blocked SMT1 |
A—A blocked SMT2 5000 7 _

10000—

8000

6000[—
4000

1.45x

N

Energy to solution [J]

4000 —
L | A PR I |
L 12 14 16 18 20 |
2.9x

2000 NNA*A_L 7
NP

0 10 20 30 40 50 6C
Performance [GFlop/s]

Fig. 3: Single-socket performance and energy Z-plot ofmédquares), augmented
(circles), and blocked (triangles) versions on IVB, conipguone thread per core
(filled) vs. two threads (open). Inset: enlarged region dfisdion for naive and
blocked versions with absolute upper performance limiheLsegments between
points are a guide to the eye only. The SELL-32-1 matrix fdrmas used in all
cases. No significant variation in energy or performanceabasrved over multiple
runs on the socket.

this processor and thus profits from all cores on the chip. goeed to the naive
and blocked versions, it also shows a significant speedu%fwhen using both
hardware threads per core (SMT2).

The energy to solution data in the figure was measured on thé gziekage
level, i.e., ignoring the rest of the system such as RAM, di8ks, etc. On the other
hand, the particular IVB processor used for the benchmdréw/s a low dynamic
power compared to chips with higher clock speeds. As a coeseg, performance
improvements by algorithmic or implementation changesdiate into almost pro-
portional energy savings. This is demonstrated by the dhblites in Fig[3: Com-
paring full sockets, the naive version is &.5lower and takes 1.45more energy
than the augmented version. The blocked version ig 3akter and takes 2:9less
energy than the augmented version. This correspondenoceiesmnly more accu-
rate when adding the full baseline power contributions fedhsystem components.
Note that a further 20% of package-level energy can be saitbdtie naive and
blocked versions by choosing the minimum number of coreseéhaures satura-
tion.

The influence of SMT is minor in the saturating cases, whigtxj{gected since
SMT cannot improve performance in the presence of a strongangbottleneck.
The 12% performance boost for the blocked version comesmefligible energy
savings. We must conclude that executing code on both haediveeads increases

Performance Engineering for sparse building blocks 11

T T T T T T T T T T T T
| ® naive SELL-1-1

10000 00 naive SELL-32-1
augmented SELL-1-1|
augmented SELL-321

- A blocked SELL-1-1
8000 4A—A blocked SELL-32-1

6000

I SO
I 1.08x %
50000~ ------- ¥ - a

i]
6000—
4000

4000—

Energy to solution [J]

2000

0 10 20 30 40 50 60
Performance [GFlop/s]

Fig. 4: Single-socket performance and energy Z-plot forshme kernel versions
as in Fig[B but comparing the SELL-1-1 (CSR) matrix formalgd symbols) with
SELL-32-1 (open symbols) at two threads per core.

the power dissipation, which is also seen by the slight gnieigrease for SMT2 in
the saturated case.

A performance-energy comparison of the SELL-1-1 (a.k.eR{08atrix storage
format with SELL-32-1 is shown in Fid.]4 for all code versiofi$he energy ad-
vantage of SELL-32-1 in the saturating case is mainly dubedigher single-core
performance and accordingly smaller number of require@xto reach the satu-
ration point, leading to package-level energy savings ofe8fb 13% for the naive
and augmented kernels, respectively. We attribute thatdifference in saturated
performance to the different right-hand side data accettsrpa in the SpMV. The
blocked variant shows no advantage (even a slight slowdtwithe SIMD-friendly
data layout, which is expected since the access to the nu#tiis negligible.

The conclusion from the socket-level performance and gnamglysis is that
optimization by performance engineering translates,weki order, into equivalent
energy savings. Overall, the performance ratio betweefasiest variant (blocked,
with two threads per core) and the lowest (full-socket CSRedl naive implemen-
tation) is 5.1, at an energy reduction of £.5At least on the Intel Ivy Bridge system
studied here we expect similar findings for other algoritlmestigated in the ES-
SEX project.

A comprehensive analysis of the power dissipation and gnieepavior of the
studied code variants and the changes for multi-socket gyidyhparallel runs is
beyond the scope of this paper and will be published elseavher

12 M. Kreutzer et al.

4 An overview of GHOST

The GHOST (General, Hybrid, and Optimized Sparse Toolkitaly summarizes
the effort put into computational building blocks in the ESSproject. A detailed

description can be found in [L7]. GHOST, a “physics” packagstaining several
scalable sparse matrices, and a range of example apptisatie available for down-
loadd GHOST features high performance building blocks for spansar algebra.

It builds on the “MPI+X” programming paradigm where “X" car lobne of either

OpenMP+SIMD or CUDA. The development process of GHOST isealpaccom-

panied by analytic performance modeling, which guaranteespute kernels with
optimal performance where possible.

There are several software libraries available that oftenes sort of hetero-
geneous execution capabilities. MAGMA [20], ViennaCL |[2®ETSc [4], and
Trilinos [12] are arguably the most prominent approach&sfavhich have their
strengths and weaknesses. PETSc and Trilinos are simi@aHOST as they also
build on MPI+X. MAGMA and ViennaCL, on the other hand, progishared mem-
ory building blocks for different architectures but do napese any distributed
memory capabilities themselves. The most fundamentareifice between GHOST
and the aforementioned libraries is the possibility of dzdeallel heterogeneous ex-
ecution in GHOST (see below). GHOST has been designed froatchewith het-
erogeneous architecture in mind. This has to be viewed itrasirto the subsequent
addition of heterogeneous computing features to origitaimogeneous libraries
such as, e.g., PETSc, for which a disclaimer @WARNING: Using GPUs ef-
fectively is difficult! You must be dedicated and willing tefginto the guts of GPU
usage if you are serious about using GPUs."

GHOST is not intended to be a rival of the mentioned librarteg rather a
promising supplement and novel approach. Due to its youeg iagertainly falls
behind in terms of robustness and maturity. While other swistfocus on broad
applicability, which often comes with sacrificing some peniance, achieving op-
timal efficiency for selected applications without losirighg of possible broader
applicability is clearly the main target of GHOST develophéVithin the ESSEX
effort, we supply mechanisms to use GHOST in higher leveirsok frameworks
using the PHIST library [31]. To give an example,lin[17] werb@emonstrated the
feasibility and performance gain of using PHIST to lever&#OST for a Krylov-
Schur algorithm as implemented in the Trilinos package Ang8]. In the follow-
ing we will briefly summarize the most important features 6f@ST and how they
influence the ESSEX effort.

A unique feature of GHOST is the capability of data-paradbeécution across
heterogeneous devices. MPI ranks can be assigned to gyluitrabinations of het-
erogeneous compute devices, as depicted in[fFig. 5. A spgsteEns matrix is the
central data structure in GHOST, and it is distributed roisenamong MPI ranks.
In order to reflect heterogeneous systems in an efficient aratire amount of ma-

5 https://bitbucket.org/essex/
6 http://www.mcs.anl.gov/petsc/features/gpus.html, access@9LD15

Performance Engineering for sparse building blocks 13

Nvidia GPU ___[\I_v_igja__QF_’l_J____' Intel Xeon Phi
] ooeo Process 1
000000000OONNOND | | DOEMWERWmWEEREE | 00
L o |
SOCKET 0 SOCKET 1) SOCKET 0 SOCKET 1

WHGRREERA8) DEGRRRAREE | Process 0™ Process 2
I I
[MEM 0] [MEM 1] [MEM 0 J [MEM 1 J

(a) Heterogeneous node (b) Process placement

Fig. 5: Heterogeneous compute node and sensible procass@at as suggested
by GHOST. Figure taken from [17].

trix rows per rank can be arbitrarily set at runtime. Sedidhdemonstrates possible
performance gains due to this feature.

On top of "MPI+X*, GHOST exposes the possibility for affiniggvare task-level
parallelism. Users can create tasks, which are defined tsaaylrallback functions.
OpenMP parallelism can be used inside those tasks and GHGIStBke care of
thread affinity and resource management. This feature carsdu, e.g., for com-
munication hiding, asynchronous 1/O, or checkpointingfuture work we plan to
implement asynchronous preconditioning techniques basedis mechanism.

20,
T T T T T T T T 60 | | | | |
g_ 16 e @ 50+
g g |
o =
~ 12 i 401
9 12 % I
§ 8 £ 30
S €
5 ©® SELL-4-128 (AVX intrinsics] £ 20 .
o <> SELL-4-128 (plain C) © | |@®Hard-coded block vector width
A-ACRS (plain C) o 10k <~ Runtime block vector width | |
0 1 1 1 1 1 1 1 1 i
1 2 3 45 6 7 8 9 10 0 L | 1 | | L
Number of cores 1 2 3 4 5 6 7 8

Block vector width
Fig. 6: Intra-socket performance on a

single CPU showing the impact of vec—Iength on the SpMMV performance

torization on SpMV performance for . < X ¢
different storage formats. Figure taken'/It! Increasing block vector width on a
from [17] single CPU. Figure taken frorn [17].

Fig. 7: The impact of hard-coded loop

14 M. Kreutzer et al.

GHOST uses the SELL-©@- sparse matrix storage format as previously de-
scribed in Sec{_3.111. Note that this does not imply exolusif CSR, since CSR
is just a special case of SELL-€-with C=1 ando=1. Selected kernels are imple-
mented using compiler intrinsics to ensure efficient vez&tion. This turned out
to be a requirement for optimal performance of rather comymempute-intensive
kernels. However, vectorization may also pay off for kesngith lower computa-
tional intensity. Figlb backs up the findings of Séct. 3.2.2his regard. Not only
the superior vectorization potential of SELL«-over CSR, but also a manually
vectorized implementation of the SELL-€-SpMV kernel yields a highly energy-
efficient SpMV kernel.

Vector blocking, i.e., processing several dense vectorsnag, is usually a
highly appropriate optimization technique in sparse lingigebra due to the of-
ten bandwidth-limited nature of sparse matrix algorith@$lOST addresses this
by supporting efficient block vector operations for row- @atlmn-major storage.

Block vector operations often lead to short loops due to dlsmaber of vec-
tors (i.e., in the order of tens) in a block. As short loopsaften accompanied by
performance penalties, it is possible to define a list of kdialensions at GHOST
compile time. Block vector kernels will be automaticallyhgeated according to this
list. This mechanism is used not only for block vectors, te for the chunk height
C in the SELL-Co sparse matrix format. Fifl 7 illustrates the performanaeelie
observed due to generated block vector kernels for theespaatrix multiple vector
multiplication (SpMMV).

Another way to improve the computational intensity of spdisear algebra al-
gorithms is kernel fusion. In this regard, specialized késriike the KPM-DOS
operator are implemented in close collaboration with etgpfeom the application
domain. The specialization grade, i.e., the number and gwtibn of fused oper-
ations, of those kernels can be gradually increased, whidkemthem potentially
useful for applications beyond the ESSEX scope. In thisrcegashould be noted
that kernel fusion, while certainly being a promising op#ation approach, dimin-
ishes the potential for efficient task-parallel executibims fact promotes the use of
kernel fusion together with data parallelism as used in GHOS

Among others, the described features enable very high imegfoce on modern,
heterogeneous supercomputers as demonstrated in ouoysevork [16] 25 27,
15].

5 GHOST applications

In the course of the ESSEX project the GHOST library has besenl by several
numerical schemes (developed and implemented in the caitiqmel algorithms
layer) to enable large scale (heterogeneous) computdtionsiantum physics sce-
narios defined by the application layer. Here we summarileetssl (already pub-
lished) application scenarios to demonstrate the capatitlie state, and the broad
applicability of the GHOST library. We have added measums)avhere appropri-

Performance Engineering for sparse building blocks 15

ate, to demonstrate the performance sustainability of tHOST framework over
several processor generations. Moreover these measuseaiso provide an im-
pression of the rather moderate technological improvesnentthe hardware level
during the ESSEX project period. In particular we focus onadailevel comparison
of a Cray XC30 system, which hosts one Nvidia K20X GPGPU aralotel Xeon
E5-2670 “Sandy Bridge” (SNB) processor in each node, wite@nt CPU com-
pute node comprising two Intel Xeon E5-2695v3 “Haswell” {(MBCPUs. While
the Cray XC30 system (Piz Daint at CSCS Lugano) has entees@igih500 top ten
list at the start of the ESSEX project and is still ranked a@Ntvember 2015), Intel
Haswell-based systems showed up first in the top ten in 2015.

5.1 Density-of-states computations using KPM-DOS

The basic algorithm (KPM-DOS) used in ESSEX to compute thesithe of states
of large sparse matrices has been introduced in §edt. 3[L6lnwe have pre-
sented the PE process and implementation details to enalblehBterogeneous
(CPU+GPGPU) KPM-DOS computations and could achieve higlerevel per-
formance up to 1024 nodes in weak scaling scenarios. Siecenk have extended
our runs to up to 4096 nodes (which is approximately 80% ofRiint) to achieve
0.5 Pflop/s of sustained performance when computing the Oi@Sapological in-
sulator model Hamiltonian (see FId. 8). The correspondiatyimhas a dimension
of 3x 10'% and is extremely sparse with an average of 13 non-zero siteierow.
On the node level the optimizations described earlier hagle¢d significant perfor-
mance gains for both devices as shown in Eig. 9, and we exjmaitaisenergy ef-
ficiency improvements on the Cray XC30 system as demondtediteve. Note that
during the optimization steps the performance bottlenetkhe GPGPU changed
from main memory saturation to the dot product. Extendirgdiscussion to lat-
est CPU hardware, we find the Haswell-based system beingl&8tyahead of the
Cray XC30 node.

5.2 Inner eigenvalue computation with Chebyshev filter
diagonalization (ChebFD)

Applying Chebyshev polynomials as a filter in an iterativbspace scheme allows
for the computation of inner eigenpairs of large sparseinesr The attractive fea-
ture of this well-known procedure is the close relation lestwthe filter polynomial
and the KPM-DOS scheme. Replacing the norm computatiom®) and the dot
product in Algorithn{l by a vector additiomxpy) yields the polynomial filter in
our ChebFD scheme. For a more detailed description of ChéiMRi2h is also part
of our BEAST-P solver), and the relation to KPM-DOS we refette report on
the ESSEX solver repository [31] and to [25]. In ChebFD thé/pomial filter is

16 M. Kreutzer et al.

T T T T 160 — n
—— 100% Parallel Efficiency 1xSNB 4
@@ Square, Weak Scaling 140 1xK20X —
o 100 || #—@ Bar, Weak Scaling Y B Node: SNB+K20X
g_ =—a Square, Strong Scaling _8- 120/~ | M@ Node: 2x HSW _
E 22 100 N
£ £]
5 1w 1 3 \
e 2 80 \ —
< @© L N
£ E ol N | B
o o J Z
5 . I T T
- N N
T)R
o oLAN 7\ N
1 4 16 64 256 1024 4096 Vanilla Kernel Kernel F.+

Number of heterogeneous nodes Fusion Blocking

Fig. 8: Strong and weak scaling perfor-Fig. 9: Impact of optimization steps de-

mance results for different geometriesscribed in Sect_3l1 on the node level

for the topological insulator test caseperformance of Piz Daint and a CPU-

on Piz Daint. Measurements up to 1024only node containing two Intel Xeon

nodes have been presented_ in/[16] E5-2695v3 processors X2HSW). For
Piz Daint the performance of the two
devices (SNB and K20X) is also shown
separately. Piz Daint numbers are taken
from [16]

applied to a subspace of vectors and also optimization 2agee AlgorithniB)
can be applied. As compared to the KPM-DOS kernel, the lowermtational in-
tensity of the filter kernel reduces performance on the CRUitactures, while the
GPGPU benefits from the lack of reduction operations mousgattleneck back to
data transfer (see Fig.]10). It is also evident that the CragXnode (K20X+SNB)
outperforms the Intel Haswell nodeX2HSW) on this kernel.

As a second part ChebFD requires a subspace orthogonatizéip, which ba-
sically leads to matrix-matrix multiplications involviriall and skinny” matrices.
The performance of widely used BLAS level 3 multi-threadibddries such as In-
tel MKL or ATLAS are often not competitive in the relevant pareter space ad-
dressed by ESSEX applications as can be seen ifLHig. 11. Upléclavector size
of approximately 50 they may miss the upper performance éamposed by the
memory bandwidth and the arithmetic peak performance byge lamargin. Hence,
GHOST provides optimized kernels for these applicatiomatdes achieving typ-
ically 80% of the maximum attainable performance (see [Elj). Mlote that auto-
matic kernel generation with compile-time defined small elisions as described
in Sect[4 also works for “tall and skinny” GEMM operations.

The corresponding cuBLAS calls show similar charactesséind thus ESSEX
is currently preparing hand-optimized GPGPU kernels fal ‘and skinny” dense
matrix operations as well.

Performance Engineering for sparse building blocks

T T T T T T T T ~ T T "~ T 71 T
- _ 200]
140 L =~ Roofline limit
- 180 ,_.leecHosT | _ _ _ =
» 120 4 s F 77 m-m ATLAS
E‘ 2x HSW ?8_ 160 A—A |ntel MKL]
= 100 -~ = 14
'6 00 I 6 0
= £ 120
o 801 — ©
% L % 100}
60 —
g 1x SNB E 80
8] € wf
o 40 - o 60
o I o r
A—A KPM-DOS 40T
20~ @—@ ChebFD: Polynomial Filter N 20
ol I I I I I 0

1 2 4 8 16 32 8 16 24 32 40 48 56 64
Block vector size R Block vector size R

Fig. 10: Performance of KPM-DOS ker- Fig. 11: Performance of tall and skinny
nel and polynomial filter for the topo- matrix-matrix multiplicationX < V x
logical insulator matrix on the Nvidia W with double complex data type,
K20m GPGPU. For reference, the numwhereX isRx R,V isRxD,WisD xR
bers for a single Intel Xeon-2670 (SNB) and D = 10’. Measurements were per-
and a two-socket Intel Xeon-2695v3formed on a single Intel E5-2660v2 (lvy
(2x HSW) system are given for block Bridge) socket (see Seéi._3.2.2 for de-
vector widthR = 32. tails).

With the current ChebFD implementation we have computed ibd8rmost
eigenvalues of a topological insulator matrix (matrix dimsien 1§) on 512 In-
tel Xeon nodes on the second phase of SuperﬁlWﬁhin 10 hours (se€ [25] for
details). Using all of the 3072 nodes we will be able to corapthe relevant in-
ner eigenvalues for a topological insulator matrix dimensif 10 at a sustained
performance of approximately 250 Tflop/s on that machine.

5.3 Block Jacobi-Davidson QR method

The popular Jacobi-Davidson method has been chosen in EES&Ofnpute a few
low eigenpairs of large sparse matrices. A block varianD@R) was implemented
which operates on dense blocks of vectors and thus incréasesomputational
intensity (similar to optimization stage 2 in Fig. 3) and d=ses the amount of
synchronization points (s€e [27] and our report on the ESS@ver repository [31]
for details).
The most time consuming operations in this algorithm ar&SipMV and vari-

ous tall-skinny matrix-matrix products for a limited nunnleé block sizes (e.g. 2,4

"seehttps://www. | rz. de/ servi ces/ conput e/ super nuc/ syst endescri pti on/
for hardware configuration

https://www.lrz.de/services/compute/supermuc/systemdescription/

18 M. Kreutzer et al.

and 8). The implementation was tuned to make the best peassia of the highly
optimized GHOST kernels (see Flg.]11), and in particulackleectors in row-
major storage.

As soon as all optimized CUDA “tall and skinny” GEMM kernelseample-
mented in GHOST, BJDQR will also be available for fully hetgeneous computa-
tions. For a more detailed analysis of performance and nigalefficiency of our
BJDQR solver we refer ta [27, 28], where it was shown that GH@8livers near
optimal performance on an IVB system and is clearly supedather implemen-
tations.

6 Summary and outlook

We have given an overview of the building block layer in theSEX project, specif-
ically the GHOST library. Using several examples of apgiaas within the project
(Kernel Polynomial Method [KPM], Chebyshev filter diagamation [ChebFD],
block Jacobi-Davidson QR [BJDQR]) we have shown that GHO&Taddress the
challenges of heterogeneous, highly parallel architestwiith its consistent MPI+X
approach. GHOST implements the highly successful SEL&-§parse matrix for-
mat, which contains several other popular formats such d&8 &Sspecial cases.
We have demonstrated our model-driven Performance Engjiigegpproach using
the example of a KPM-DOS application, showing that improgata in the kernel
implementation (including the choice of a SIMD-friendlytddayout, loop fusion,
and blocking) lead not only to the expected performance avgments but also to
proportional savings in energy to solution on the CPU lebeth validated using
appropriate performance and power models. For KPM we haegeshlown the scal-
ability on up to 4096 nodes on the Piz Daint supercomputdiketang a sustained
performance of 0.5 Pflop/s and 87% heterogeneous pardildbaty on the node
level (CPU+GPGPU). The algorithmically more challengingeBFD implemen-
tation benefited from the optimized tall skinny matrix mpiitations in GHOST,
which reach substantially higher (in fact, near-light shesocket-level performance
than the vendor library (MKL) for small to medium block vectgizes. Finally,
guided by the same PE approach as in the other cases we cquiovarthe per-
formance of our BJDQR implementation to yield & 3peedup compared with the
Trilinos building block library Tpetra.

The first three years of research into sparse building blbeks already yielded
effective ways of Performance Engineering, based on d@natyvdels and insight
into hardware-software interaction. Beyond the continugglementation and opti-
mization of tailored kernels for the algorithmic and apation-centric parts of the
ESSEX project, we will in the future place more emphasis dintped (problem-
aware) matrix storage schemes, high-precision reducfienations with automatic
error control, and on more advanced modeling and validataproaches. We have
also just barely scratched the surface of the energy dissiparoperties of our algo-

Performance Engineering for sparse building blocks 19

rithms; more in-depth analysis is in order to develop a meteited understanding
of power dissipation on heterogeneous hardware.

Acknowledgments

The research reported here was funded by Deutsche Forsdemginschaft via
the priority programme 1648 “Software for Exascale CommitiSPPEXA). The
authors gratefully acknowledge support by the Gauss Céotr8upercomputing
e.V. (GCS) for providing computing time on their SuperMUGstgm at Leibniz
Supercomputing Centre through project pr84pi, and by th€ €£5ugano for pro-
viding access to their Piz Daint supercomputer. Work at L&ss is performed
under the auspices of the USDOE.

References

1. URLhttps://qgithub. com RRZE- HPC/ |1 kw d/

2. Ashari, A., Sedaghati, N., Eisenlohr, J., Parthasarathe®layappan, P.: Fast sparse matrix-
vector multiplication on GPUs for graph applications. In: é&edings of the International
Conference for High Performance Computing, Networking, &jerand Analysis, SC '14,
pp. 781-792. IEEE Press, Piscataway, NJ, USA (2014). DOI 10/$102014.69. URL
http://dx.dol.org/10. 1109/ SC. 2014. 69

3. Baker, C.G., Hetmaniuk, U.L., Lehoucq, R.B., Thornquist,KH Anasazi soft-
ware for the numerical solution of large-scale eigenvalue Iprob. ACM Trans.
Math. Softw. 36(3), 13:1-13:23 (20009). DOl 10.1145/1527286.1527287. URL
http://doi.acm org/ 10. 1145/ 1527286. 1527287

4. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, BscBelman, K., Dalcin, L.,
Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Mcles, L.C., Rupp, K., Smith,
B.F., Zampini, S., Zhang, H.: PETSc Web pad&t p: // www. nTs. anl . gov/ pet sc
(2015). URLhtt p: /7 ww. nts. anl . gov/ petsc

5. Callahan, D., Cocke, J., Kennedy, K.: Estimating interlockli anproving balance for
pipelined architectures. Journal of Parallel and Distrib@ethputing5(4), 334 — 358 (1988).
DOI 10.1016/0743-7315(88)90002-0. DOI: 10.1016/07435{88)90002-0

6. De Vogeleer, K., Memmi, G., Jouvelot, P., Coelho, F.: The gyléequency convexity
rule: Modeling and experimental validation on mobile devicesn: R. Wyrzykowski,
J. Dongarra, K. Karczewski, J. Waniewski (eds.) Parallel Proogssamd Ap-
plied Mathematics, Lecture Notes in Computer Science, vol. 8384, pp. 793-803.
Springer Berlin Heidelberg (2014). DOl 10.1007/978-3-&8224-374. URL
http://dx.doil.org/10. 1007/ 978- 3- 642- 55224- 3 74

7. Duff, 1.S., Heroux, M.A., Pozo, R.: An overview of the sparbasic linear al-
gebra subprograms: The new standard from the BLAS technicalmforu ACM
Trans. Math. Softw.28(2), 239-267 (2002). DOl 10.1145/567806.567810. URL
http://dol.acmorg/10.1145/567806. 567810

8. Fehske, H., Hager, G., Pieper, A.: Electron confinementaplyggne with gate-defined quan-

tum dots. physica status solidi (B%2(8), 1868-1871 (2015). DOI 10.1002/pssb.201552119.

URLhttp://dx.dol.org/ 10. 1002/ pssb. 201552119
9. Greathouse, J.L., Daga, M.: Efficient sparse matrix-vector ipfichtion on GPUs us-
ing the CSR storage format. In: Proceedings of the Internatid®onference for

https://github.com/RRZE-HPC/likwid/
http://dx.doi.org/10.1109/SC.2014.69
http://doi.acm.org/10.1145/1527286.1527287
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1007/978-3-642-55224-3_74
http://doi.acm.org/10.1145/567806.567810
http://dx.doi.org/10.1002/pssb.201552119

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
. Pieper, A., Heinisch, R.L., Fehske, H.: Electron dynanmggaphene with gate-defined quan-

24.

M. Kreutzer et al.

High Performance Computing, Networking, Storage and AnalySiS, '14, pp. 769-—
780. IEEE Press, Piscataway, NJ, USA (2014). DOl 10.1109/S@.281 URL
http://dx.doi.org/10.1109/ SC. 2014. 68

Greathouse, J.L., Daga, M.: Structural agnostic SpMV: fidgpfCSR-adaptive for irregular
matrices. In: To be published in the Proceedings of the 2015 IEBEEnational Conference
on High Performance Computing (HiPC 2015) (2015)

Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploripgrformance and power prop-
erties of modern multi-core chips via simple machine models. Coecoy and Com-
putation: Practice and Experience pp. n/fa—n/a (2014). D@L1aD2/cpe.3180. URL
http://dx.dol.org/10. 1002/ cpe. 3180

Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.Blu, J.J., Kolda, T.G., Lehoucq,
R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., SalingeiGA.Thornquist, H.K., Tumi-
naro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: Averview of the Trilinos project.
ACM Trans. Math. Softw31(3), 397—423 (2005). DOI http://doi.acm.org/10.1145/10B2
1089021

Hockney, R.W., Curington, 1.Jf; ,: A parameter to characterize memory and communica-
tion bottlenecks. Parallel Computirig)X3), 277-286 (1989). DOI 10.1016/0167-8191(89)
90100-2. DOI: 10.1016/0167-8191(89)90100-2

Kreutzer, M., Hager, G., Wellein, G., Fehske, H., BishofR . AA unified sparse matrix data
format for efficient general sparse matrix-vector multiplicatmn modern processors with
wide SIMD units. SIAM J. Sci. Compu86(5), C401-C423 (2014). DOI 10.1137/130930352.
URLhtt p:// epubs. si am org/ doi /abs/ 10. 1137/ 130930352

Kreutzer, M., Pieper, A., Alvermann, A., Fehske, H., HaGerWellein, G., Bishop, A.R.: Ef-
ficient large-scale sparse eigenvalue computations on heteroge hardware (2015). Poster
at 2015 ACM/IEEE International Conference on High Perforoea@omputing Networking,
Storage and Analysis (SC'15)

Kreutzer, M., Pieper, A., Hager, G., Alvermann, A., WelleG., Fehske, H.: Performance
engineering of the kernel polynomial method on large-scale-GPW systems. In: 29th IEEE
International Parallel & Distributed Processing Symposium BEEDPS 2015). Hyderabad,
India (2015). DOI 10.1109/IPDPS.2015.76

Kreutzer, M., Thies, J., #hrig-Zoliner, M., Pieper, A., Shahzad, F., Galgon, M., Baser-
mann, A., Fehske, H., Hager, G., Wellein, G.: GHOST: buildingcks for high perfor-
mance sparse linear algebra on heterogeneous systems. abeRF07.081012015). URL
http://arxiv.org/abs/1507. 08101

Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Béisear algebra subprograms for
Fortran usage. ACM Trans. Math. Softy(3), 308—-323 (1979). DOI 10.1145/355841.355847.
URLhttp://doi.acm org/ 10. 1145/ 355841. 355847

Liu, W., Vinter, B.: CSR5: An efficient storage format fooss-platform sparse matrix-vector
multiplication. In: Proceedings of the 29th ACM on Interoatil Conference on Supercom-
puting, ICS '15, pp. 339-350. ACM, New York, NY, USA (2015).0D10.1145/2751205.
2751209. URLhtt p: // doi . acm or g/ 10. 1145/ 2751205. 2751209

MAGMA: Matrix algebra on GPU and multicore architectures.
http://1cl.cs.utk. edu/ nagnma/. Accessed: June 2015

Monakov, A., Lokhmotov, A., Avetisyan, A.: Automaticallyurting sparse matrix-
vector multiplication for GPU architectures. In: Y. Patt, Pogha, E. Duester-
wald, P. Faraboschi, X. Martorell (eds.) High Performance Ermdedd Architec-
tures and CompilersLecture Notes in Computer Science, vol. 5952, pp. 111-125.
Springer Berlin Heidelberg (2010). DOl 10.1007/978-3-641515-810. URL
http://dx.dol.org/10.1007/978- 3- 642-11515-8_10

Pieper, A., Fehske, H.: Topological insulators in randoteptials. Phys. Rev. B (submitted)

tum dots. EPL (Europhysics Letters)4(4), 47,010 (2013)
Pieper, A., Heinisch, R.L., Wellein, G., Fehske, H.: Dotidd and dispersive states in
graphene quantum dot superlattices. Phys. R&9,865,121 (2014)

http://dx.doi.org/10.1109/SC.2014.68
http://dx.doi.org/10.1002/cpe.3180
http://epubs.siam.org/doi/abs/10.1137/130930352
http://arxiv.org/abs/1507.08101
http://doi.acm.org/10.1145/355841.355847
http://doi.acm.org/10.1145/2751205.2751209
http://icl.cs.utk.edu/magma/
http://dx.doi.org/10.1007/978-3-642-11515-8_10

Performance Engineering for sparse building blocks 21

25.

26.

27.

28.

29.

30.

31.

32.
. Treibig, J., Hager, G., Wellein, G.: LIKWID: A lightweighperformance-oriented tool

34.

35.

Pieper, A., Kreutzer, M., Galgon, M., Alvermann, A., FeysK., Hager, G., Lang, B.,
Wellein, G.: High-performance implementation of Chebysheeffiliagonalization for in-
terior eigenvalue computations. ArXiv e-prints (2015)

Pieper, A., Schubert, G., Wellein, G., Fehske, H.: Effe¢disorder and contacts on transport
through graphene nanoribbons. Phys. Re88B195,409 (2013)

Rohrig-Zoliner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, Basermann, A., Hager,
G., Wellein, G., Fehske, H.: Increasing the performance of thehleDavidson method by
blocking (2014). URLhttp://elib.dlr.de/ 89980/ Accepted for publication in
SIAM J. Sci. Comput.

Rohrig-zZoliner, M., Thies, J., Kreutzer, M., Alvermann, A., Pieper, Basermann, A., Hager,
G., Wellein, G., Fehske, H.: Performance of block jacobi-dsen eigensolvers (2014). Poster
at 2014 ACM/IEEE International Conference on High Perforoea@omputing Networking,
Storage and Analysis

Rupp, K., Rudolf, F., Weinbub, J.: ViennaCL - A High Levehear Algebra Library for
GPUs and Multi-Core CPUs. In: Intl. Workshop on GPUs and SifierApplications, pp.
51-56 (2010)

Stengel, H., Treibig, J., Hager, G., Wellein, G.: Quaimi performance bottlenecks of stencil
computations using the execution-cache-memory model. In: Pdaugs of the 29th ACM
International Conference on Supercomputing, ICS '15, p@—226. ACM, New York, NY,
USA (2015). DOI 10.1145/2751205.2751240. DOI: 10.11451205.2751240

Thies, J., Galgon, M., Shahzad, F., Alvermann, A., KreutderPieper, A., Bhrig-Zoliner,
M., Basermann, A., Fehske, H., Hager, G., Lang, B., WelleinT@uards an exascale enabled
sparse solver repository. In: Proceedings of SPPEXA Symosium p0$8bmitted. Springer
(n.a.)

TOP500 Supercomputer Sit#d.t p: / /7 www. t op500. or gl Accessed: June 2015

suite for x86 multicore environments. In: Proceedings of the0282th International
Conference on Parallel Processing Workshops, ICPPW '10, pp-2®/ IEEE Com-
puter Society, Washington, DC, USA (2010). DOl 10.1109/I@P®10.38. URL
http://dx.doil.org/10. 1109/ 1 CPPW 2010. 38

Treibig, J., Hager, G., Wellein, G.: likwid-bench: An emsible microbenchmarking platform
for x86 multicore compute nodes. In: H. Brunst, M.SilMr, W.E. Nagel, M.M. Resch (eds.)
Tools for High Performance Computing 2011, pp. 27-36. SpriBgelin Heidelberg (2012).
DOI 10.1007/978-3-642-31476-8

WeiRe, A., Wellein, G., Alvermann, A., Fehske, H.: The leérnpoly-
nomial method. Rev. Mod. Phys.78 275-306 (2006). URL
http://dx.dol.org/10. 1103/ RevMddPhys. 78. 275

http://elib.dlr.de/89980/
http://www.top500.org
http://dx.doi.org/10.1109/ICPPW.2010.38
http://dx.doi.org/10.1103/RevModPhys.78.275

	Performance Engineering and Energy Efficiency of Building Blocks for Large, Sparse Eigenvalue Computations on Heterogeneous Supercomputers
	Moritz Kreutzer, Jonas Thies, Andreas Pieper, Andreas Alvermann, Martin Galgon, Melven Röhrig-Zöllner, Faisal Shahzad, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Bruno Lang, and Gerhard Wellein
	Introduction
	Contribution
	Holistic Performance Engineering driving energy efficiency on the example of the Kernel Polynomial Method (KPM)
	Performance Engineering for KPM
	Single-socket performance and energy analysis

	An overview of GHOST
	GHOST applications
	Density-of-states computations using KPM-DOS
	Inner eigenvalue computation with Chebyshev filter diagonalization (ChebFD)
	Block Jacobi-Davidson QR method

	Summary and outlook
	References

