Abstract
In this paper we describe the hardware and application-inherent challenges that future exascale systems pose to high-performance computing (HPC) and propose a system architecture that addresses them. This architecture is based on proven building blocks and few principles: (1) a fast light-weight kernel that is supported by a virtualized Linux for tasks that are not performance critical, (2) decentralized load and health management using fault-tolerant gossip-based information dissemination, (3) a maximally-parallel checkpoint store for cheap checkpoint/restart in the presence of frequent component failures, and (4) a runtime that enables applications to interact with the underlying system platform through new interfaces. The paper discusses the vision behind FFMK and the current state of a prototype implementation of the system, which is based on a microkernel and an adapted MPI runtime.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
COSMO-SPECS+FD4 has an internal load balancer, which we disabled in the experiments described here.
References
Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E., Ni, X., Robson, M., Sun, Y., Totoni, E., Wesolowski, L., Kale, L.: Parallel programming with migratable objects: Charm++ in practice. In: Proceedings of the Supercomputing 2014, Leipzig, pp. 647–658. IEEE (2014)
Arnold, D.C., Miller, B.P.: Scalable failure recovery for high-performance data aggregation. In: Proceedings of the IPDPS 2010, Atlanta, pp. 1–11. IEEE (2010)
Barak, A., Guday, S., Wheeler, R.: The MOSIX Distributed Operating System: Load Balancing for UNIX. Lecture Notes in Computer Science, vol. 672. Springer, Berlin/New York (1993)
Barak, A., Margolin, A., Shiloh, A.: Automatic resource-centric process migration for MPI. In: Proceedings of the EuroMPI 2012. Lecture Notes in Computer Science, vol. 7490, pp. 163–172. Springer, Berlin/New York (2012)
Barak, A., Drezner, Z., Levy, E., Lieber, M., Shiloh, A.: Resilient gossip algorithms for collecting online management information in exascale clusters. Concurr. Comput. Pract. Exper. 27 (17), 4797–4818 (2015)
Beckman, P., et al.: Argo: an exascale operating system. http://www.argo-osr.org/. Accessed 20 Nov 2015
Ben-Nun, T., Levy, E., Barak, A., Rubin, E.: Memory access patterns: the missing piece of the multi-GPU puzzle. In: Proceedings of the Supercomputing 2015, Newport Beach, pp. 19:1–19:12. ACM (2015)
Berkeley Lab Checkpoint/Restart. http://ftg.lbl.gov/checkpoint. Accessed 20 Nov 2015
Brightwell, R., Oldfield, R., Maccabe, A.B., Bernholdt, D.E.: Hobbes: composition and virtualization as the foundations of an extreme-scale OS/R. In: Proceedings of the ROSS’13, pp. 2:1–2:8. ACM (2013)
Bronevetsky, G., Marques, D., Pingali, K., Stodghill, P.: Automated application-level checkpointing of MPI programs. ACM Sigplan Not. 38 (10), 84–94 (2003)
Burstedde, C., Ghattas, O., Gurnis, M., Isaac, T., Stadler, G., Warburton, T., Wilcox, L.: Extreme-scale AMR. In: Proceedings of the Supercomputing 2010, Tsukuba, pp. 1–12. ACM (2010)
Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale resilience: 2014 update. Supercomput. Front. Innov. 1 (1), 5–28 (2014)
Corradi, A., Leonardi, L., Zambonelli, F.: Diffusive load-balancing policies for dynamic applications. IEEE Concurr. 7 (1), 22–31 (1999)
Dongarra, J., et al.: The international exascale software project roadmap. Int. J. High Speed Comput. 25 (1), 3–60 (2011)
EXAHD – An Exa-Scalable Two-Level Sparse Grid Approach for Higher-Dimensional Problems in Plasma Physics and Beyond. http://ipvs.informatik.uni-stuttgart.de/SGS/EXAHD/index.php. Accessed 29 Nov 2015
FFMK Website. http://ffmk.tudos.org. Accessed 20 Nov 2015
Harlacher, D.F., Klimach, H., Roller, S., Siebert, C., Wolf, F.: Dynamic load balancing for unstructured meshes on space-filling curves. In: Proceedings of the IPDPSW 2012, pp. 1661–1669. IEEE (2012)
Kale, L.V., Zheng, G.: Charm++ and AMPI: adaptive runtime strategies via migratable objects. In: Parashar, M., Li, X. (eds.) Advanced Computational Infrastructures for Parallel and Distributed Adaptive Applications, chap. 13, pp. 265–282. Wiley, Hoboken (2009)
Kogge, P., Shalf, J.: Exascale computing trends: adjusting to the “New Normal” for computer architecture. Comput. Sci. Eng. 15 (6), 16–26 (2013)
Lackorzynski, A., Warg, A., Peter, M.: Generic virtualization with virtual processors. In: Proceedings of the 12th Real-Time Linux Workshop, Nairobi (2010)
Lange, J., Pedretti, K., Hudson, T., Dinda, P., Cui, Z., Xia, L., Bridges, P., Gocke, A., Jaconette, S., Levenhagen, M., Brightwell, R.: Palacios and Kitten: new high performance operating systems for scalable virtualized and native supercomputing. In: Proceedings of the IPDPS 2010, Atlanta, pp. 1–12. IEEE (2010)
Levy, E., Barak, A., Shiloh, A., Lieber, M., Weinhold, C., Härtig, H.: Overhead of a decentralized gossip algorithm on the performance of HPC applications. In: Proceedings of the ROSS’14, Munich, pp. 10:1–10:7. ACM (2014)
Lieber, M., Grützun, V., Wolke, R., Müller, M.S., Nagel, W.E.: Highly scalable dynamic load balancing in the atmospheric modeling system COSMO-SPECS+FD4. In: Proceedings of the PARA 2010. Lecture Notes in Computer Science, vol. 7133, pp. 131–141. Springer, Berlin/New York (2012)
Liedtke, J.: On micro-kernel construction. In: Proceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP’95), Copper Mountain Resort, pp. 237–250. ACM (1995)
Lucas, R., et al.: Top ten exascale research challenges. DOE ASCAC subcommittee report. http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf (2014). Accessed 20 Nov 2015
Milthorpe, J., Ganesh, V., Rendell, A.P., Grove, D.: X10 as a parallel language for scientific computation: practice and experience. In: Proceedings of the IPDPS 2011, Anchorage, pp. 1080–1088. IEEE (2011)
Moody, A., Bronevetsky, G., Mohror, K., de Supinski, B.: Detailed modeling, design, and evaluation of a scalable multi-level checkpointing system. Technical report LLNL-TR-440491, Lawrence Livermore National Laboratory (LLNL) (2010)
MPI: A message-passing interface standard, version 3.1. http://www.mpi-forum.org/docs (2015). Accessed 20 Nov 2015
Mvapich: Mpi over infiniband. http://mvapich.cse.ohio-state.edu/. Accessed 20 Nov 2015
Open Source Molecular Dynamics. http://www.cp2k.org/. Accessed 20 Nov 2015
Ouyang, X., Marcarelli, S., Rajachandrasekar, R., Panda, D.K.: RDMA-based job migration framework for MPI over Infiniband. In: Proceedings of the IEEE CLUSTER 2010, Heraklion, pp. 116–125. IEEE (2010)
Rajachandrasekar, R., Moody, A., Mohror, K., Panda, D.K.: A 1 PB/s file system to checkpoint three million MPI tasks. In: Proceedings of the HPDC’13, New York, pp. 143–154. ACM (2013)
Roitzsch, M., Wachtler, S., Härtig, H.: Atlas: look-ahead scheduling using workload metrics. In: Proceedings of the RTAS 2013, Philadelphia, pp. 1–10. IEEE (2013)
Sato, K., Maruyama, N., Mohror, K., Moody, A., Gamblin, T., de Supinski, B.R., Matsuoka, S.: Design and modeling of a non-blocking checkpointing system. In: Proceedings of the Supercomputing 2012, Venice, pp. 19:1–19:10. IEEE (2012)
Sato, M., Fukazawa, G., Yoshinaga, K., Tsujita, Y., Hori, A., Namiki, M.: A hybrid operating system for a computing node with multi-core and many-core processors. Int. J. Adv. Comput. Sci. 3, 368–377 (2013)
Wang, C., Mueller, F., Engelmann, C., Scott, S.L.: Proactive process-level live migration and back migration in HPC environments. J. Par. Distrib. Comput. 72 (2), 254–267 (2012)
Wende, F., Steinke, T., Reinefeld, A.: The impact of process placement and oversubscription on application performance: a case study for exascale computing. Technical report 15–05, ZIB (2015)
Winkel, M., Speck, R., Hübner, H., Arnold, L., Krause, R., Gibbon, P.: A massively parallel, multi-disciplinary Barnes-Hut tree code for extreme-scale N-body simulations. Comput. Phys. Commun. 183 (4), 880–889 (2012)
Wisniewski, R.W., Inglett, T., Keppel, P., Murty, R., Riesen, R.: mOS: an architecture for extreme-scale operating systems. In: Proceedings of the ROSS’14, Munich, pp. 2:1–2:8. ACM (2014)
XtreemFS – a cloud file system. http://www.xtreemfs.org. Accessed 20 Nov 2015
Xue, M., Droegemeier, K.K., Weber, D.: Numerical prediction of high-impact local weather: a driver for petascale computing. In: Bader, D.A. (ed.) Petascale Computing: Algorithms and Applications, pp. 103–124. Chapman & Hall/CRC, Boca Raton (2008)
Zheng, F., Yu, H., Hantas, C., Wolf, M., Eisenhauer, G., Schwan, K., Abbasi, H., Klasky, S.: Goldrush: resource efficient in situ scientific data analytics using fine-grained interference aware execution. In: Proceedings of the Supercomputing 2013, Eugene, pp. 78:1–78:12. ACM (2013)
Acknowledgements
This research and the work presented in this paper is supported by the German priority program 1648 “Software for Exascale Computing” via the research project FFMK [16]. We also thank the cluster of excellence “Center for Advancing Electronics Dresden” (cfaed). The authors acknowledge the Jülich Supercomputing Centre, the Gauss Centre for Supercomputing, and the John von Neumann Institute for Computing for providing compute time on the JUQUEEN supercomputer.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Weinhold, C. et al. (2016). FFMK: A Fast and Fault-Tolerant Microkernel-Based System for Exascale Computing. In: Bungartz, HJ., Neumann, P., Nagel, W. (eds) Software for Exascale Computing - SPPEXA 2013-2015. Lecture Notes in Computational Science and Engineering, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-40528-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-40528-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40526-1
Online ISBN: 978-3-319-40528-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)