Abstract
In this paper, aspects of the two-scale simulation of dual-phase steels are considered. First, we present two-scale simulations applying a top-down one-way coupling to a full thermo-elastoplastic model in order to study the emerging temperature field. We find that, for our purposes, the consideration of thermo-mechanics at the microscale is not necessary. Second, we present highly parallel fully-coupled two-scale FE2 simulations, now neglecting temperature, using up to 458, 752 cores of the JUQUEEN supercomputer at Forschungszentrum Jülich. The strong and weak parallel scalability results obtained for heterogeneous nonlinear hyperelasticity exemplify the massively parallel potential of the FE2 multiscale method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (1), 15–41 (2001)
Amestoy, P.R., Guermouche, A., L’Excellent, J.Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32 (2), 136–156 (2006)
Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2014)
Balzani, D., Gandhi, A., Tanaka, M., Schröder, J.: Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices. Comput. Mech. 55, 861–871 (2015)
Balzani, D., Scheunemann, L., Brands, D., Schröder, J.: Construction of two- and three-dimensional statistically similar RVEs for coupled micro-macro simulations. Comput. Mech. 54, 1269–1284 (2014)
Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)
Falgout, R.D., Jones, J.E., Yang, U.M.: The design and implementation of hypre, a library of parallel high performance preconditioners. In: Bruaset, A.M., Bjorstad, P., Tveito, A. (eds.) Numerical Solution of Partial Differential Equations on Parallel Computers. Lecture Notes in Computational Science and Engineering, vol. 51, pp. 267–294. Springer, Berlin (2006). http://dx.doi.org/10.1007/3-540-31619-1_8
Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual-primal unified FETI method – part I: a faster alternative to the two-level FETI method. Int. J. Numer. Methods Eng. 50, 1523–1544 (2001)
Feyel, F., Chaboche, J.: Fe2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183, 309–330 (2000)
Fish, J., Shek, K.: Finite deformation plasticity for composite structures: computational models and adaptive strategies. Comput. Methods Appl. Mech. Eng. 172, 145–174 (1999)
Geers, M., Kouznetsova, V., Brekelmans, W.: Multi-scale first-order and second-order computational homogenization of microstructures towards continua. Int. J. Multiscale Comput. 1, 371–386 (2003)
Golanski, D., Terada, K., Kikuchi, N.: Macro and micro scale modeling of thermal residual stresses in metal matrix composite surface layers by the homogenization method. Comput. Mech. 19, 188–201 (1997)
Griewank, A., Walther, A.: Evaluating Derivatives. Society for Industrial and Applied Mathematics, 2nd edn. (2008). http://epubs.siam.org/doi/abs/10.1137/1.9780898717761
Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155–177 (2002)
Holzapfel, G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. John Wiley and Sons, Chichester (2000). http://opac.inria.fr/record=b1132727
Klawonn, A., Rheinbach, O.: Robust FETI-DP methods for heterogeneous three dimensional elasticity problems. Comput. Methods Appl. Mech. Eng. 196 (8), 1400–1414 (2007)
Klawonn, A., Rheinbach, O.: Highly scalable parallel domain decomposition methods with an application to biomechanics. ZAMM Z. Angew. Math. Mech. 90 (1), 5–32 (2010). http://dx.doi.org/10.1002/zamm.200900329
Klawonn, A., Widlund, O.B.: Dual-primal FETI methods for linear elasticity. Commun. Pure Appl. Math. 59 (11), 1523–1572 (2006)
Klawonn, A., Lanser, M., Rheinbach, O.: EXASTEEL – computational scale bridging using a FE2TI approach with ex_nl/FE2. Technical report FZJ-JSC-IB-2015-01, Jülich Supercomputing Center, Germany (2015). https://juser.fz-juelich.de/record/188191/files/FZJ-2015-01645.pdf. In: Frings, Brian J.N. Wylie (eds.) JUQUEEN Extreme Scaling Workshop 2015. Dirk Brömmel and Wolfgang
Klawonn, A., Lanser, M., Rheinbach, O.: FE2TI: Computational Scale Bridging for Dual-Phase Steels (2015). Accepted for publication to the proceedings of the 16th ParCo Conference, Edinburgh. To be published in Advances in Parallel Computing
Klawonn, A., Lanser, M., Rheinbach, O.: Towards extremely scalable nonlinear domain decomposition methods for elliptic partial differential equations. SIAM J. Sci. Comput. 37 (6), C667–C696 (2015)
Miehe, C.: Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput. Methods Appl. Mech. Eng. 134, 223–240 (1996)
Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity. simulation of texture development in polycrystalline materials. Comput. Methods Appl. Mech. Eng. 171, 387–418 (1999)
Moulinec, H., Suquet, P.: A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Eng. 157, 69–94 (1998)
Pérez-Foguet, A., Rodríguez-Ferran, A., Huerta, A.: Numerical differentiation for local and global tangent operators in computational plasticity. Comput. Methods Appl. Mech. Eng. 189, 277–296 (2000)
Schenk, O., Gärtner, K.: Two-level dynamic scheduling in PARDISO: improved scalability on shared memory multiprocessing systems. Parallel Comput. 28 (2), 187–197 (2002)
Schröder, J.: A numerical two-scale homogenization scheme: the FE2-method. In: J. Schröder, K. Hackl (eds.) Plasticity and Beyond – Microstructures, Crystal-Plasticity and Phase Transitions. CISM Lecture Notes 550. Springer, Wien (2013)
Simo, J., Miehe, C.: Associative coupled thermoplasticity at finite strains: formulations, numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98, 41–104 (1992)
Smit, R., Brekelmans, W., Meijer, H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng. 155, 181–192 (1998)
Stephan, M., Docter, J.: JUQUEEN: IBM Blue Gene/QⓇ Supercomputer System at the Jülich Supercomputing Centre. JLSRF 1, A1. http://dx.doi.org/10.17815/jlsrf-1-18 (2015)
Tanaka, M., Fujikawa, M., Balzani, D., Schröder, J.: Robust numerical calculation of tangent moduli at finite strains based on complex-step derivative approximation and its application to localization analysis. Comput. Methods Appl. Mech. Eng. 269, 454–470 (2014)
The HDF Group: Hierarchical Data Format, version 5. http://www.hdfgroup.org/HDF5/ (1997-NNNN)
Wriggers, P., Miehe, C., Kleiber, M., Simo, J.: On the coupled thermomechanical treatment of necking problems via finite element methods. Int. J. Numer. Methods Eng. 33, 869–883 (1992)
Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics. Elsevier, Oxford (2005)
Acknowledgements
This work was supported by the German Research Foundation (DFG) through the Priority Program 1648 “Software for Exascale Computing” (SPPEXA ), projects BA 2823/8-1, KL 2094/4-1, RH 122/2-1, and SCHR 570/19-1.
The authors gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS share of the supercomputer JUQUEEN [30] at Jülich Supercomputing Centre (JSC). GCS is the alliance of the three national supercomputing centres HLRS (Universität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal Ministry of Education and Research (BMBF) and the German State Ministries for Research of Baden-Württemberg (MWK), Bayern (StMWFK) and Nordrhein-Westfalen (MIWF).
The use of CHEOPS at Universität zu Köln and of the High Performance Cluster at Technische Universität Bergakademie Freiberg are also gratefully acknowledged. Furthermore, the authors D. Balzani and A. Gandhi appreciate S. Prüger for helpful scientific discussions.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Balzani, D., Gandhi, A., Klawonn, A., Lanser, M., Rheinbach, O., Schröder, J. (2016). One-Way and Fully-Coupled FE2 Methods for Heterogeneous Elasticity and Plasticity Problems: Parallel Scalability and an Application to Thermo-Elastoplasticity of Dual-Phase Steels. In: Bungartz, HJ., Neumann, P., Nagel, W. (eds) Software for Exascale Computing - SPPEXA 2013-2015. Lecture Notes in Computational Science and Engineering, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-40528-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-40528-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40526-1
Online ISBN: 978-3-319-40528-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)