Abstract
Substantial modifications of both the choice of the grids, the combination coefficients, the parallel data structures and the algorithms used for the combination technique lead to numerical methods which are scalable. This is demonstrated by the provision of error and complexity bounds and in performance studies based on a state of the art code for the solution of the gyrokinetic equations of plasma physics. The key ideas for a new fault-tolerant combination technique are mentioned. New algorithms for both initial- and eigenvalue problems have been developed and are shown to have good performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali, M.M., Southern, J., Strazdins, P.E., Harding, B.: Application level fault recovery: Using fault-tolerant open MPI in a PDE solver. In: 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, Phoenix, 19–23 May 2014, pp. 1169–1178. IEEE (2014)
Ali, M.M., Strazdins, P.E., Harding, B., Hegland, M., Larson, J.W.: A fault-tolerant gyrokinetic plasma application using the sparse grid combination technique. In: Proceedings of the 2015 International Conference on High Performance Computing & Simulation (HPCS 2015), pp. 499–507. IEEE, Amsterdam (2015). Outstanding paper award
Benk, J., Bungartz, H.J., Nagy, A.E., Schraufstetter, S.: Variants of the combination technique for multi-dimensional option pricing. In: Günther, M., Bartel, A., Brunk, M., Schöps, S., Striebel, M. (eds.) Progress in Industrial Mathematics at ECMI 2010, pp. 231–237. Springer, Berlin/Heidelberg (2010)
Benk, J., Pflüger, D.: Hybrid parallel solutions of the Black-Scholes PDE with the truncated combination technique. In: Smari, W.W., Zeljkovic, V. (eds.) 2012 International Conference on High Performance Computing & Simulation, HPCS 2012, Madrid, 2–6 July 2012, pp. 678–683. IEEE (2012)
Bungartz, H.J., Griebel, M., Rüde, U.: Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems. Comput. Method. Appl. M. 116 (1–4), 243–252 (1994)
Das, S., Neumaier, A.: Solving overdetermined eigenvalue problems. SIAM J. Sci. Comput. 35 (2), 541–560 (2013)
Fang, Y.: One dimensional combination technique and its implementation. ANZIAM J. Electron. Suppl. 52 (C), C644–C660 (2010)
Franz, S., Liu, F., Roos, H.G., Stynes, M., Zhou, A.: The combination technique for a two-dimensional convection-diffusion problem with exponential layers. Appl. Math. 54 (3), 203–223 (2009)
Garcke, J.: Regression with the optimised combination technique. In: Proceedings of the 23rd International Conference on Machine Learning (ICML 2006), vol. 2006, pp. 321–328. ACM, New York (2006)
Garcke, J.: A dimension adaptive sparse grid combination technique for machine learning. ANZIAM J. 48 (C), C725–C740 (2007)
Garcke, J., Griebel, M.: On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comput. Phys. 165(2), 694–716 (2000)
Garcke, J., Hegland, M.: Fitting multidimensional data using gradient penalties and combination techniques. In: Modeling, Simulation and Optimization of Complex Processes, pp. 235–248. Springer, Berlin (2008)
Garcke, J., Hegland, M.: Fitting multidimensional data using gradient penalties and the sparse grid combination technique. Computing 84 (1–2), 1–25 (2009)
Gene Development Team: GENE. http://www.genecode.org/
Griebel, M.: The combination technique for the sparse grid solution of PDEs on multiprocessor machines. Parallel Process. Lett. 2, 61–70 (1992)
Griebel, M., Harbrecht, H.: On the convergence of the combination technique. Lect. Notes Comput. Sci. 97, 55–74 (2014)
Griebel, M., Thurner, V.: The efficient solution of fluid dynamics problems by the combination technique. Int. J. Numer. Method. H. 5 (3), 251–269 (1995)
Griebel, M., Huber, W., Rüde, U., Störtkuhl, T.: The combination technique for parallel sparse-grid-preconditioning or -solution of PDEs on workstation networks. In: Bougé, L., Cosnard, M., Robert, Y., Trystram, D.(eds.) Parallel Processing: CONPAR 92 – VAPP V, Lecture Notes in Computer Science. vol. 634, pp. 217–228. Springer, Berlin/Heidelberg/London (1992). Proceedings of the Second Joint International Conference on Vector and Parallel Processing, Lyon, 1–4 Sept 1992
Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: Iterative Methods in Linear Algebra (Brussels, 1991), pp. 263–281. North-Holland, Amsterdam (1992)
Harding, B.: Adaptive sparse grids and extrapolation techniques. In: Proceedings of Sparse Grids and Applications 2014. Lecture Notes in Computational Science and Engineering, vol. 109, pp. 79–102. Springer, New York (2015)
Harding, B.: Combination technique coefficients via error splittings. ANZIAM J. 56, C355–C368 (2016). (Online)
Harding, B.: Fault tolerant computation of hyperbolic PDEs with the sparse grid combination technique. Ph.D. thesis, The Australian National University (2016)
Harding, B., Hegland, M.: A robust combination technique. ANZIAM J. Electron. Suppl. 54 (C), C394–C411 (2012)
Harding, B., Hegland, M.: A parallel fault tolerant combination technique. Adv. Parallel Comput. 25, 584–592 (2014)
Harding, B., Hegland, M.: Robust solutions to PDEs with multiple grids. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and Applications, Munich 2012. Lecture Notes in Computer Science. vol. 97, pp. 171–193. Springer, Cham (2014)
Harding, B., Hegland, M., Larson, J.W., Southern, J.: Fault tolerant computation with the sparse grid combination technique. SIAM J. Sci. Comput. 37 (3), C331–C353 (2015)
Heene, M., Pflüger, D.: Scalable algorithms for the solution of higher-dimensional PDEs. In: Proceedings of SPPEXA Symposium 2016. Lecture Notes in Computational Science and Engineering. Springer, Berlin/Heidelberg (2016)
Heene, M., Kowitz, C., Pflüger, D.: Load balancing for massively parallel computations with the sparse grid combination technique. In: Bader, M., Bungartz, H.J., Bode, A., Gerndt, M., Joubert, G.R. (eds.) Parallel Computing: Accelerating Computational Science and Engineering (CSE). pp. 574–583. IOS Press, Amsterdam (2014)
Hegland, M.: Adaptive sparse grids. In: Burrage, K., Sidje, R.B. (eds.) Proceedings of 10th Computational Techniques and Applications Conference CTAC-2001, vol. 44, pp. C335–C353 (2003)
Hegland, M., Garcke, J., Challis, V.: The combination technique and some generalisations. Linear Algebra Appl. 420 (2–3), 249–275 (2007)
Hupp, P., Jacob, R., Heene, M., Pflüger, D., Hegland, M.: Global communication schemes for the sparse grid combination technique. Adv. Parallel Comput. 25, 564–573 (2014)
Hupp, P., Heene, M., Jacob, R., Pflüger, D.: Global communication schemes for the numerical solution of high-dimensional PDEs. Parallel Comput. 52, 78–105 (2016)
Jennings, L.S., Osborne, M.: Generalized eigenvalue problems for rectangular matrices. IMA J. Appl. Math. 20 (4), 443–458 (1977)
Kowitz, C.: Applying the sparse grid combination technique in Linear Gyrokinetics. Ph.D. thesis, Technische Universität München (2016)
Kowitz, C., Hegland, M.: The sparse grid combination technique for computing eigenvalues in linear gyrokinetics. Procedia Comput. Sci. 18, 449–458 (2013). 2013 International Conference on Computational Science
Kowitz, C., Hegland, M.: An opticom method for computing eigenpairs. In: Garcke, J., Pflüger, D. (eds.) Sparse Grids and Applications, Munich 2012 SE – 10. Lecture Notes in Computer Science. vol. 97, pp. 239–253. Springer, Cham (2014)
Kowitz, C., Pflüger, D., Jenko, F., Hegland, M.: The combination technique for the initial value problem in linear gyrokinetics. Lecture Notes in Computer Science, vol. 88, pp. 205–222. Springer, Heidelberg (2013)
Larson, J.W., Hegland, M., Harding, B., Roberts, S., Stals, L., Rendell, A., Strazdins, P., Ali, M.M., Kowitz, C., Nobes, R., Southern, J., Wilson, N., Li, M., Oishi, Y.: Fault-tolerant grid-based solvers: Combining concepts from sparse grids and mapreduce. Procedia Comput. Sci. 18, 130–139 (2013). 2013 International Conference on Computational Science
Larson, J.W., Strazdins, P.E., Hegland, M., Harding, B., Roberts, S.G., Stals, L., Rendell, A.P., Ali, M.M., Southern, J.: Managing complexity in the parallel sparse grid combination technique. In: Bader, M., Bode, A., Bungartz, H.J., Gerndt, M., Joubert, G.R., Peters, F.J. (eds.) PARCO. Advances in Parallel Computing, vol. 25, pp. 593–602. IOS Press, Amsterdam (2013)
Larson, J., Strazdins, P., Hegland, M., Harding, B., Roberts, S., Stals, L., Rendell, A., Ali, M., Southern, J.: Managing complexity in the parallel sparse grid combination technique. Adv. Parallel Comput. 25, 593–602 (2014)
Lastdrager, B., Koren, B., Verwer, J.: The sparse-grid combination technique applied to time-dependent advection problems. In: Multigrid Methods, VI (Gent, 1999). Lecture Notes of Computer Science & Engineering, vol. 14, pp. 143–149. Springer, Berlin (2000)
Osborne, M.R.: A new method for the solution of eigenvalue problems. Comput. J. 7 (3), 228–232 (1964)
Parra Hinojosa, A., Kowitz, C., Heene, M., Pflüger, D., Bungartz, H.J.: Towards a fault-tolerant, scalable implementation of GENE. In: Recent Trends in Computation Engineering – CE2014. Lecture Notes in Computer Science, vol. 105, pp. 47–65. Springer, Cham (2015)
Pflaum, C.: Convergence of the combination technique for second-order elliptic differential equations. SIAM J. Numer. Anal. 34 (6), 2431–2455 (1997)
Pflaum, C., Zhou, A.: Error analysis of the combination technique. Numer. Math. 84 (2), 327–350 (1999)
Pflüger, D., Bungartz, H.J., Griebel, M., Jenko, F., Dannert, T., Heene, M., Kowitz, C., Parra Hinojosa, A., Zaspel, P.: EXAHD: An exa-scalable two-level sparse grid approach for higher-dimensional problems in plasma physics and beyond. In: Euro-Par 2014: Parallel Processing Workshops, Porto. Lecture Notes in Computer Science, vol. 8806, pp. 565–576. Springer, Cham (2014)
Reisinger, C.: Analysis of linear difference schemes in the sparse grid combination technique. IMA J. Numer. Anal. 33 (2), 544–581 (2013)
Strazdins, P.E., Ali, M.M., Harding, B.: Highly scalable algorithms for the sparse grid combination technique. In: IPDPS Workshops, Hyderabad, pp. 941–950. IEEE (2015)
Strazdins, P.E., Ali, M.M., Harding, B.: The design and analysis of two highly scalable sparse grid combination algorithms (2015, under review)
Wilkinson, J.H.: Rounding Errors in Algebraic Processes. Her Majesty’s Stationery Office, London (1963)
Wong, M., Hegland, M.: Maximum a posteriori density estimation and the sparse grid combination technique. ANZIAM J. Electron. Suppl. 54 (C), C508–C522 (2012)
Wong, M., Hegland, M.: Opticom and the iterative combination technique for convex minimisation. Lect. Notes Comput. Sci. 97, 317–336 (2014)
Zenger, C.: Sparse grids. In: Hackbusch, W. (ed.) Parallel Algorithms for Partial Differential Equations. Notes on Numerical Fluid Mechanics, vol. 31, pp. 241–251. Vieweg, Braunschweig (1991)
Acknowledgements
The work presented here reviews some results of a German-Australian collaboration going over several years which was supported by grants from the German DFG (SPP-1648 SPPEXA: EXAHD) and the Australian ARC (LP110200410), contributions by Fujitsu Laboratories of Europe (FLE) and involved researchers from the ANU, FLE, TUM, and the Universities of Stuttgart and Bonn. Contributors to this research included Stephen Roberts, Jay Larson, Moshin Ali, Ross Nobes, James Southern, Nick Wilson, Hans-Joachim Bungartz, Valeriy Khakhutskyy, Alfredo Hinojosa, Mario Heene, Michael Griebel, Jochen Garcke, Rico Jacob, Philip Hupp, Yuan Fang, Matthias Wong, Vivien Challis and several others.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Hegland, M., Harding, B., Kowitz, C., Pflüger, D., Strazdins, P. (2016). Recent Developments in the Theory and Application of the Sparse Grid Combination Technique. In: Bungartz, HJ., Neumann, P., Nagel, W. (eds) Software for Exascale Computing - SPPEXA 2013-2015. Lecture Notes in Computational Science and Engineering, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-40528-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-40528-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40526-1
Online ISBN: 978-3-319-40528-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)