Abstract
Object grasping is a key task in robot manipulation. Performing a grasp largely depends on the object properties and grasp constraints. This paper proposes a new statistical relational learning approach to recognize graspable points in object point clouds. We characterize each point with numerical shape features and represent each cloud as a (hyper-) graph by considering qualitative spatial relations between neighboring points. Further, we use kernels on graphs to exploit extended contextual shape information and compute discriminative features which show improvement upon local shape features. Our work for robot grasping highlights the importance of moving towards integrating relational representations with low-level descriptors for robot vision. We evaluate our relational kernel-based approach on a realistic dataset with 8 objects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
These results contain an errata to the results reported in [20].
References
Aleotti, J., Caselli, S.: Part-based robot grasp planning from human demonstration. In: ICRA, pp. 4554–4560 (2011)
Antanas, L., Frasconi, P., Costa, F., Tuytelaars, T., De Raedt, L.: A relational kernel-based framework for hierarchical image understanding. In: Gimel’farb, G.L., Hancock, E.R., Imiya, A.I., Kuijper, A., Kudo, M., Shinichiro Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 171–180. Springer, Heidelberg (2012)
Baltzakis, H.: Orca simulator (2005). http://www.ics.forth.gr/cvrl/_software/orca_setup.exe
Bohg, J., Kragic, D.: Learning grasping points with shape context. RAS 58(4), 362–377 (2010)
Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: CVPR, pp. 2559–2566 (2010)
Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)
Costa, F., De Grave, K.: Fast neighborhood subgraph pairwise distance kernel. In: ICML, pp. 255–262 (2010)
De Raedt, L.: Logical and Relational Learning. Cognitive Technologies. Springer, New York (2008)
Farid, R., Sammut, C.: Plane-based object categorisation using relational learning. ML 94(1), 3–23 (2014)
Farid, R., Sammut, C.: Region-based object categorisation using relational learning. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS, vol. 8862, pp. 357–369. Springer, heidelberg (2014)
Frasconi, P., Costa, F., De Raedt, L., De Grave, K.: kLog: a language for logical and relational learning with kernels. Artif. Intell. 217, 117–143 (2014)
Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book, 2nd edn. Prentice Hall Press, Upper Saddle River (2008)
Haussler, D.: Convolution kernels on discrete structures. Technical report UCSC-CRL-99-10, University of California at Santa Cruz (1999)
Jia, Y., Huang, C., Darrell, T.: Beyond spatial pyramids: Receptive field learning for pooled image features. In: CVPR, pp. 3370–3377 (2012)
Jiang, Y., Moseson, S., Saxena, A.: Efficient grasping from rgbd images: Learning using a new rectangle representation. In: ICRA, pp. 3304–3311 (2011)
Kraft, D., Detry, R., Pugeault, N., Baseski, E., Guerin, F., Piater, J.H., Krüger, N.: Development of object and grasping knowledge by robot exploration. IEEE T. Auton. Mental Dev. 2(4), 368–383 (2010)
Kraft, D., Detry, R., Pugeault, N., Başeski, E., Piater, J., Krüger, N.: Learning objects and grasp affordances through autonomous exploration. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 235–244. Springer, Heidelberg (2009)
Krtgen, M., Novotni, M., Klein, R.: 3D shape matching with 3D shape contexts. In: The 7th Central European Seminar on Computer Graphics (2003)
Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. CoRR abs/1301.3592 (2013)
Mocanu-Antanas, L.: Relational Visual Recognition. Ph.D. thesis, Informatics Section, Department of Computer Science, Faculty of Engineering Science (2014)
Montesano, L., Lopes, M.: Learning grasping affordances from local visual descriptors. In: ICDL, pp. 1–6. IEEE Computer Society (2009)
Montesano, L., Lopes, M.: Active learning of visual descriptors for grasping using non-parametric smoothed beta distributions. Humanoids 60(3), 452–462 (2012)
Moreno, P., Hornstein, J., Santos-Victor, J.: Learning to grasp from point clouds. Technical report Vislab-TR001/2011, Department of Electrical and Computers Engineering, Instituto Superior Técnico, Portugal, September 2011
Muja, M., Ciocarlie, M.: Table top segmentation package (2012). http://www.ros.org/wiki/tabletop_object_detector
Neumann, M., Garnett, R., Moreno, P., Patricia, N., Kersting, K.: Propagation kernels for partially labeled graphs. In: MLG-2012 (2012)
Neumann, M., Moreno, P., Antanas, L., Garnett, R., Kersting, K.: Graph kernels for object category prediction in task-dependent robot grasping. In: MLG-2013 (2013)
Rusu, R.B.: Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. Ph.D. thesis, Computer Science Department, Technische Universitat Munchen, Germany, October 2009
Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram. In: IROS. Taipei, Taiwan, October 2010
Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. IJRR 27(2), 157–173 (2008)
Saxena, A., Wong, L.L.S., Ng, A.Y.: Learning grasp strategies with partial shape information. In: AAAI, pp. 1491–1494. AAAI Press (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Antanas, L., Moreno, P., De Raedt, L. (2016). Relational Kernel-Based Grasping with Numerical Features. In: Inoue, K., Ohwada, H., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2015. Lecture Notes in Computer Science(), vol 9575. Springer, Cham. https://doi.org/10.1007/978-3-319-40566-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-40566-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40565-0
Online ISBN: 978-3-319-40566-7
eBook Packages: Computer ScienceComputer Science (R0)