Skip to main content

An Exercise in Declarative Modeling for Relational Query Mining

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9575))

Included in the following conference series:

  • 518 Accesses

Abstract

Motivated by the declarative modeling paradigm for data mining, we report on our experience in modeling and solving relational query and graph mining problems with the IDP system, a variation on the answer set programming paradigm. Using IDP or other ASP-languages for modeling appears to be natural given that they provide rich logical languages for modeling and solving many search problems and that relational query mining (and ILP) is also based on logic. Nevertheless, our results indicate that second order extensions to these languages are necessary for expressing the model as well as for efficient solving, especially for what concerns subsumption testing. We propose such second order extensions and evaluate their potential effectiveness with a number of experiments in subsumption as well as in query mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Cat, B.: Separating Knowledge from Computation: An FO(.) Knowledge Base System and its Model Expansion Inference. Ph.D. thesis. KU Leuven

    Google Scholar 

  2. De Cat, B., Bogaerts, B., Bruynooghe, M., Denecker, M.: Predicate Logic as a Modelling Language: The IDP System. In: CoRR abs/1401.6312 (2014)

    Google Scholar 

  3. Erdem, E., Inoue, K., Oetsch, J., Puehrer, J., Tompits, H., Yilmaz, C.: Answer-set programming as a new approach to event-sequence testing. In: International Conference on Advances in System Testing and Validation Lifecycle (2011)

    Google Scholar 

  4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Guns, T., Dries, A., Tack, G., Nijssen, S., De Raedt, L.: MiningZinc: a modeling language for constraint-based mining. In: IJCAI (2013)

    Google Scholar 

  6. Guyet, T., Moinard, Y., Quiniou, R.: Using Answer Set Programming forpattern mining. In: CoRR abs/1409.7777 (2014)

    Google Scholar 

  7. Helma, C., Kramer, S.: A survey of the predictive toxicology challenge 2000–2001. Bioinformatics 19(10), 1179–1182 (2003)

    Article  Google Scholar 

  8. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Järvisalo, M.: Itemset mining as a challenge application for answer set enumeration. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 304–310. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. King, R.D., Srinivasan, A., Dehaspe, L.: Warmr: a data mining tool for chemical data. J. Comput. Aided Mol. Des. 15(2), 173–181 (2001)

    Article  Google Scholar 

  11. Kumar, D.A., de Compadre, L., Rosa, L., Gargi, D., Shusterman Alan, J., Corwin, H.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34(2), 786–797 (1991)

    Article  Google Scholar 

  12. van der Laag, P.R.J., Nienhuys-Cheng, S.-H.: Completeness and properness of refinement operators in inductive logic programming. J. Log. Program. 34(3), 201–225 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. McCarthy, J.: Elaboration Tolerance (1999)

    Google Scholar 

  15. Muggleton, S., Entailment, I.: Inverse entailment and progol. New Gener. Comput. Spec. Issue Inductive Logic Program. 13(3–4), 245–286 (1995)

    Article  Google Scholar 

  16. Nijssen, S., Kok, J.N.: Efficient frequent query discovery in Farmer. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 350–362. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Plotkin, G.D.: A further note on inductive generalization. In: Machine Intelligence, vol. 6, pp. 101–124 (1971)

    Google Scholar 

  18. De Raedt, L.: Logical and Relational Learning: From ILP to MRDM (Cognitive Technologies). Springer-Verlag New York Inc., New York (2008)

    Book  Google Scholar 

  19. De Raedt, L., Ramon, J.: Condensed representations for inductive logic programming. In: KR, pp. 438–446 (2004)

    Google Scholar 

  20. Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Logic 3, 329–340 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Rückert, U., Kramer, S.: Optimizing feature sets for structured data. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 716–723. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Santos, J., Muggleton, S.: Subsumer: A Prolog theta-subsumption engine. In: ICLP Technical Communications, vol. 7, pp. 172–181 (2010)

    Google Scholar 

  23. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009)

    Google Scholar 

  24. Vreeken, J., Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress. Data Min. Knowl. Discov. 23(1), 169–214 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: ICDM (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Paramonov .

Editor information

Editors and Affiliations

A Appendix: Introduction to IDP

A Appendix: Introduction to IDP

figure b

The IDP language [1, 2] is an extension of first order logic with inductive definitions and aggregration. The IDP system implements finite satisfiability and can be considered as an ASP system.

The particular type of inference we use in our work is model expansion. The task of model expansion is to expand a finite interpretation S for the subvocabulary V of a given logic theory T to a model of T. In the example above, V is the vocabulary of the map colouring problem i.e. area, color, \(\textit{border} (\textit{area},\textit{area})\), \(\textit{coloring}::\textit{area} \mapsto \textit{color} \); S consists of 7 countries, 4 colours and a border relation between the countries; T is the constraint that two bordering countries cannot have the same color.

In this example, the model expansion task is to find an extension of S, i.e. coloring function, such that the constraint in T is satisfied, i.e. all bordering countries have different colours.

The example can be tried online (select file “Map Colouring”):

adams.cs.kuleuven.be/idp/server.html.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Paramonov, S., van Leeuwen, M., Denecker, M., De Raedt, L. (2016). An Exercise in Declarative Modeling for Relational Query Mining. In: Inoue, K., Ohwada, H., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2015. Lecture Notes in Computer Science(), vol 9575. Springer, Cham. https://doi.org/10.1007/978-3-319-40566-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40566-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40565-0

  • Online ISBN: 978-3-319-40566-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics