Abstract
Data-driven elicitation of ontologies from structured data is a well-recognized knowledge acquisition bottleneck. The development of efficient techniques for (semi-)automating this task is therefore practically vital — yet, hindered by the lack of robust theoretical foundations. In this paper, we study the problem of learning Description Logic TBoxes from interpretations, which naturally translates to the task of ontology learning from data. In the presented framework, the learner is provided with a set of positive interpretations (i.e., logical models) of the TBox adopted by the teacher. The goal is to correctly identify the TBox given this input. We characterize the key constraints on the models that warrant finite learnability of TBoxes expressed in selected fragments of the Description Logic \(\mathcal {EL}\) and define corresponding learning algorithms.
This work was funded in part by the National Research Foundation under Grant no. 85482.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
An alternative, more general approach can be defined in terms of specific fragments of models. Such generalization, which lies beyond the scope of this paper, is essential when the learning problem concerns languages without finite model property.
References
Maedche, A., Staab, S.: Ontology learning. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 173–189. Springer, New York (2004)
Hoekstra, R.: The knowledge reengineering bottleneck. J. Semant. Web 1(1,2), 111–115 (2010)
Baader, F., Calvanese, D., Mcguinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, New York (2003)
Baader, F., Brandt, S., Lutz, C.: Pushing the \({\cal {EL}}\) envelope. In: Proceedings of IJCAI-05 (2005)
De Raedt, L., Lavrač, N.: The many faces of inductive logic programming. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 435–449. Springer, Heidelberg (1993)
De Raedt, L.: First order jk-clausal theories are PAC-learnable. Artif. Intell. 70, 375–392 (1994)
Konev, B., Lutz, C., Ozaki, A., Wolter, F.: Exact learning of lightweight description logic ontologies. In: Proceedings of Principles of Knowledge Representation and Reasoning (KR-14) (2014)
Konev, B., Lutz, C., Wolter, F.: Exact learning of TBoxes in \({\cal {EL}}\) and DL-Lite. In: Proceedings of the 28th International Workshop on Description Logics (2015)
Lutz, C., Piro, R., Wolter, F.: Enriching \({\cal {EL}}\)-concepts with greatest fixpoints. In: Proceedings of the 19th European Conference on Artificial Intelligence (ECAI 2010), pp. 41–46. IOS Press (2010)
Shapiro, E.Y.: Inductive inference of theories from facts. In: Computational Logic: Essays in Honor of Alan Robinson (1991). MIT Press (1981)
Klarman, S., Britz, K.: Ontology learning from interpretations in lightweight description logics. Technical report, CSIR Centre for Artificial Intelligence Research, South Africa (2015). http://klarman.synthasite.com/resources/KlaBri-ILP15.pdf
Pratt, V.: Models of program logics. In: Proceedings of Foundations of Computer Science (FOCS 1979) (1979)
Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07) (2007)
Distel, F.: Learning description logic knowledge bases from data using methods from formal concept analysis. Ph.D. Thesis, TU Dresden (2011)
Buitelaar, P., Cimeano, P., Magnini, F. (eds.): Ontology Learning from Text: Methods, Evaluation and Applications. IOS Press, Amsterdam (2005)
Cimeano, P., Mädche, A., Staab, S., Völker, J.: Ontology learning. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. Springer, New York (2009)
Lehmann, J., Völker, J. (eds.): Perspectives on Ontology Learning. IOS Press, Amsterdam (2014)
Cohen, W., Hirsh, H.: The learnability of description logics with equality constraints. Mach. Learn. 17(2–3), 169–199 (1994)
Lisi, F.A., Straccia, U.: A FOIL-like method for learning under incompleteness and vagueness. In: Zaverucha, G., Santos Costa, V., Paes, A. (eds.) ILP 2013. LNCS, vol. 8812, pp. 123–139. Springer, Heidelberg (2014)
Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)
Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \({\cal {ALC}}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)
Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)
Cohen, W.W., Hirsh, H.: Learning the classic description logic: Theoretical and experimental results. In: Proceedings of Principles of Knowledge Representation and Reasoning (KR 1994) (1994)
Chitsaz, M., Wang, K., Blumenstein, M., Qi, G.: Concept learning for \({\cal {EL ++}}\) by refinement and reinforcement. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS, vol. 7458, pp. 15–26. Springer, Heidelberg (2012)
Pitt, L.: Inductive inference, DFAs, and computational complexity. In: Jantke, K.P. (ed.) All 1989. LNCS, vol. 397, pp. 18–44. Springer, Heidelberg (1989)
Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Klarman, S., Britz, K. (2016). Ontology Learning from Interpretations in Lightweight Description Logics. In: Inoue, K., Ohwada, H., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2015. Lecture Notes in Computer Science(), vol 9575. Springer, Cham. https://doi.org/10.1007/978-3-319-40566-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-40566-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40565-0
Online ISBN: 978-3-319-40566-7
eBook Packages: Computer ScienceComputer Science (R0)