Skip to main content

Using \(\pi \)DDs for Nearest Neighbor Optimization of Quantum Circuits

  • Conference paper
  • First Online:
Reversible Computation (RC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9720))

Included in the following conference series:

Abstract

Recent accomplishments in the development of quantum circuits motivated research in Computer-Aided Design for quantum circuits. Here, how to consider physical constraints in general and so-called nearest neighbor constraints in particular is an objective of recent developments. Re-ordering the given qubits in a circuit provides thereby a common strategy in order to reduce the corresponding costs. But since this leads to a significant complexity, existing solutions either worked towards a single order only (and, hence, exclude better options) or suffer from high runtimes when considering all possible options. In this work, we provide an alternative which utilizes so-called \(\pi \)DDs for this purpose. They allow for the efficient representation and manipulation of sets of permutations and, hence, provide the ideal data-structure for the considered problem. Experimental evaluations confirm that, by utilizing \(\pi \)DDs, optimal or almost optimal results can be generated in a fraction of the time needed by exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory of Computing, pp. 212–219 (1996)

    Google Scholar 

  4. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. CAD 25(11), 2317–2330 (2006)

    Article  Google Scholar 

  5. Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. 12(4), 1–20 (2007)

    Article  Google Scholar 

  6. Saeedi, M., Sedighi, M., Zamani, M.S.: A novel synthesis algorithm for reversible circuits. In: International Conference on CAD, pp. 65–68 (2007)

    Google Scholar 

  7. Wille, R., Große, D., Dueck, G., Drechsler, R.: Reversible logic synthesis with output permutation. In: VLSI Design, pp. 189–194 (2009)

    Google Scholar 

  8. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli network synthesis with SAT techniques. IEEE Trans. CAD 28(5), 703–715 (2009)

    Article  Google Scholar 

  9. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conference, pp. 270–275 (2009)

    Google Scholar 

  10. Saeedi, M., Sedighi, M., Zamani, M.S.: A library-based synthesis methodology for reversible logic. Microelectron. J. 41(4), 185–194 (2010)

    Article  Google Scholar 

  11. Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. J. Emerg. Technol. Comput. Syst. 6(4), 1–26 (2010)

    Article  Google Scholar 

  12. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: ASP Design Automation Conference, pp. 85–92 (2012)

    Google Scholar 

  13. Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Am. Phys. Soc. 52, 3457–3467 (1995)

    Google Scholar 

  14. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffolli gates. In: International Symposium on Multi-valued Logic, pp. 288–293 (2011)

    Google Scholar 

  15. Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class of quantum gates. In: Design Automation Conference, pp. 36–41 (2012)

    Google Scholar 

  16. Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: ASP Design Automation Conference, pp. 85–92 (2013)

    Google Scholar 

  17. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. CAD 25(6), 1000–1010 (2006)

    Article  Google Scholar 

  18. Hung, W., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. CAD 25(9), 1652–1663 (2006)

    Article  Google Scholar 

  19. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact synthesis of elementary quantum gate circuits. Multiple-Valued Logic Soft Comput. 15(4), 270–275 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Saeedi, M., Arabzadeh, M., Zamani, M.S., Sedighi, M.: Block-based quantum-logic synthesis. Quant. Inf. Comput. 11(3&4), 262–277 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Niemann, P., Wille, R., Drechsler, R.: Efficient synthesis of quantum circuits implementing Clifford group operations. In: ASP Design Automation Conference, pp. 483–488 (2014)

    Google Scholar 

  22. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quant. Inf. Proc. 10(3), 355–377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khan, M.H.: Cost reduction in nearest neighbour based synthesis of quantum Boolean circuits. Eng. Lett. 16(1), 1–5 (2008)

    Google Scholar 

  24. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In: Conference on Quantum, Nano and Micro Technologies, pp. 26–33 (2009)

    Google Scholar 

  25. Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures. In: Design Automation Conference, pp. 41–46 (2013)

    Google Scholar 

  26. Wille, R., Lye, A., Drechsler, R.: Optimal SWAP gate insertion for nearest neighbor quantum circuits. In: ASP Design Automation Conference, pp. 489–494 (2014)

    Google Scholar 

  27. Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Trans. CAD 33(12), 1818–1831 (2014)

    Article  Google Scholar 

  28. Minato, S.: \(\pi \)DD: a new decision diagram for efficient problem solving in permutation space. In: Conference on Theory and Applications of Satisfiability Testing, pp. 90–104 (2011)

    Google Scholar 

  29. Fowler, A.G., Devitt, S.J., Hollenberg, L.C.L.: Implementation of Shor’s algorithm on a linear nearest neighbour qubit array. Quant. Inf. Comput. 4, 237–245 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Meter, R.V., Oskin, M.: Architectural implications of quantum computing technologies. J. Emerg. Technol. Comput. Syst. 2(1), 31–63 (2006)

    Article  Google Scholar 

  31. Ross, M., Oskin, M.: Quantum computing. Comm. ACM 51(7), 12–13 (2008)

    Article  Google Scholar 

  32. Amini, J.M., Uys, H., Wesenberg, J.H., Seidelin, S., Britton, J., Bollinger, J.J., Leibfried, D., Ospelkaus, C., VanDevender, A.P., Wineland, D.J.: Toward scalable ion traps for quantum information processing. New J. Phys. 12(3), 033031 (2010)

    Article  Google Scholar 

  33. Kumph, M., Brownnutt, M., Blatt, R.: Two-dimensional arrays of radio-frequency ion traps with addressable interactions. New J. Phys. 13(7), 073043 (2011)

    Article  Google Scholar 

  34. Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013)

    Article  Google Scholar 

  35. Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C.L., Munro, W.J., Nemoto, K.: Architectural design for a topological cluster state quantum computer. New J. Phys. 11(8), 083032 (2009)

    Article  Google Scholar 

  36. Yao, N.Y., Gong, Z.X., Laumann, C.R., Bennett, S.D., Duan, L.M., Lukin, M.D., Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys. Rev. A 87, 022306 (2013)

    Article  Google Scholar 

  37. Herrera-Martí, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic implementation for the topological cluster-state quantum computer. Phys. Rev. A 82, 032332 (2010)

    Article  Google Scholar 

  38. Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2, 031007 (2012)

    Google Scholar 

  39. Ohliger, M., Eisert, J.: Efficient measurement-based quantum computing with continuous-variable systems. Phys. Rev. A 85, 062318 (2012)

    Article  Google Scholar 

  40. DiVincenzo, D.P., Solgun, F.: Multi-qubit parity measurement in circuit quantum electrodynamics. New J. Phys. 15(7), 075001 (2013)

    Article  Google Scholar 

  41. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: International Joint Conference on Artificial Intelligence, pp. 386–392 (2007)

    Google Scholar 

  42. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: International Symposium Multi-valued Logic, pp. 220–225 (2008). RevLib is available at http://www.revlib.org

Download references

Acknowledgments

This work has partially been supported by the EU COST Action IC1405, the JST ERATO Minato Project, as well as JSPS KAKENHI 15H05711 and 15J01665.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wille, R., Quetschlich, N., Inoue, Y., Yasuda, N., Minato, Si. (2016). Using \(\pi \)DDs for Nearest Neighbor Optimization of Quantum Circuits. In: Devitt, S., Lanese, I. (eds) Reversible Computation. RC 2016. Lecture Notes in Computer Science(), vol 9720. Springer, Cham. https://doi.org/10.1007/978-3-319-40578-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40578-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40577-3

  • Online ISBN: 978-3-319-40578-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics