
Generating reversible circuits from higher-order
functional programs

Benoı̂t Valiron

March 20, 2016

Abstract

Boolean reversible circuits are boolean circuits made of reversible elementary
gates. Despite their constrained form, they can simulate any boolean function.
The synthesis and validation of a reversible circuit simulating a given function
is a difficult problem. In 1973, Bennett proposed to generate reversible circuits
from traces of execution of Turing machines. In this paper, we propose a novel
presentation of this approach, adapted to higher-order programs. Starting with a
PCF-like language, we use a monadic representation of the trace of execution to
turn a regular boolean program into a circuit-generating code. We show that a
circuit traced out of a program computes the same boolean function as the original
program. This technique has been successfully applied to generate large oracles
with the quantum programming language Quipper.

1 Introduction
Reversible circuits are linear, boolean circuits with no loops, whose elementary gates
are reversible. In quantum computation, reversible circuits are mostly used as ora-
cle: the description of the problem to solve. Usually, this description is given as a
classical, conventional algorithm: the graph to explore [17], the matrix coefficients to
process [13], etc. These algorithms use arbitrarily complex structures, and if some are
rather simple, for example [28], others are quite complicated and make use of analytic
functions [13], memory registers [2] (which thus have to be simulated), etc.

This paper1 is concerned with the design of reversible circuits as operational se-
mantics of a higher-order purely functional programming language. The language is
expressive enough to encode most algorithms: it features recursion, pairs, booleans and
lists, and it can easily be extended with additional structures if needed. This operational
semantics can be understood as the compilation of a program into a reversible circuit.

Compiling a program into a reversible circuit is fundamentally different from com-
piling on a regular back-end: there is no notion of “loop”, no real control flow, and all
branches will be explored during the execution. In essence, a reversible circuit is the
trace of all possible executions of a given program. Constructing a reversible circuit

1A shorter preprint has been accepted for publication in the Proceedings of Reversible Computation 2016.
The final publication is available at http://link.springer.com.

1

ar
X

iv
:1

60
3.

08
21

3v
1

 [
cs

.L
O

]
 2

7
M

ar
 2

01
6

http://link.springer.com

out of the trace of execution of a program is what Bennett [3] proposed in 1973, using
Turing machines. In this paper, we refer to it as Landauer embeddings [16].

In this paper, we build up on this idea of circuit-as-trace-of-program and formalize
it into an operational semantics for our higher-order language. This semantics is given
externally as an abstract machine, and internally, as a monadic interpretation.

The strength of our approach to circuit synthesis is to be able to reason on a regular
program independently from the constraints of the circuit construction. The approach
we follow is similar to what is done in Geometry of synthesis [9] for hardware synthe-
sis, but since the back-end we aim at is way simpler, we can devise a very natural and
compact monadic operational semantics.
Contribution. The main contribution of this paper is a monadic presentation of Lan-
dauer embeddings [16] in the context of higher-order programs. Its main strength is its
parametricity: a program really represents a family of circuits, parametrized on the size
of the input. Furthermore, we demonstrate a compositional monadic procedure for gen-
erating a reversible circuit out of a regular, purely functional program. The generated
circuit is then provably computing the same thing as the original program. This can be
used to internalize the generation of a reversible circuit out of a functional program. It
has been implemented in Quipper [23] and used for building complex quantum oracles.
Related works. From the description of a conventional function it is always possible
to design a reversible circuit computing the function out of its truth table or proper-
ties thereof and several methods have been designed to generate compact circuits (see
e.g. [24, 18, 12, 25, 7, 35]). However, if these techniques allow one to write reversible
functions with arbitrary truth tables [34], they do not usually scale well as the size of
the input grows.

Synthesis of reversible circuits can be seen as a small branch of the vast area of
hardware synthesis. In general, hardware synthesis can be structural (description of the
structure of the circuit) or behavioral (description of algorithm to encode). Functional
programming languages have been used for both. On the more structural side one
finds Lava [6], BlueSpec [20], functional netlists [22], etc. On the behavioral side we
have the Geometry of Synthesis [9], Esterel [4], ForSyDe [26], etc. Two more recent
contributions sitting in between structural and behavioral approaches are worth men-
tioning. First, the imperative, reversible synthesis language SyRec [36], specialized for
reversible circuits. Then, Thomsen’s proposal [33], allowing to represent a circuit in a
functional manner, highlighting the behavior of the circuit out of its structure.

On the logic side, the geometry of interaction [10] is a methodology that can be
used to turn functional programs into reversible computation [1, 9, 32]: it is based on
the idea of turning a typing derivation into a reversible automaton.

There have also been attempts to design reversible abstract machines and to compile
regular programs into reversible computation. For example, a reversible version of the
SEMCD machine has been designed [15]. More recently, the compiler REVS [21]
aims at compiling conventional computation into reversible circuits.

Monadic semantics for representing circuits is something relatively common, spe-
cially among the DSL community: Lava [6], Quipper [11], Fe-Si [5], etc. Other ap-
proaches use more sophisticated constructions, with type systems based on arrows [14]
in order to capture reversibility.

2

In the present work, the language is circuit-agnostic, and the interest of the method
lies more in the fact that the monadic semantics to build reversible circuits is completely
implicit and only added at circuit-generation time, following the approach in [31],
rather than in the choice of the language. Compared to [14], our approach is also
parametric in the sense that a program does not describe one fixed-size circuit but a
family of circuits, parametrized by the size of the input.
Plan of the paper. Section 2 presents the definition of reversible circuits and how
to perform computation with them. Section 3 describes a PCF-like lambda-calculus
and proposes two operational semantics: one as a simple beta-reduction and one us-
ing an abstract machine and a partial evaluation procedure generating a circuit. Sec-
tion 4 describes the call-by-value reduction strategy and explains how to internalize the
abstract-machine within the language using a monad. Section 5 discusses the use of
this technique in the context of the generation of quantum oracles, and discusses the
question of optimizing the resulting circuits. Finally, Section 6 concludes and proposes
some future investigations.

2 Reversible circuits
A reversible boolean circuit consists in a set of open wires
and elementary gates attached onto the wires. Schemati-
cally, a reversible boolean circuit is of the form shown on
the right. To each gate is associated a boolean operation,
supposed to be reversible. In this circuit example, G is a
one-bit operation (for example a not-gate, flipping a bit)
while F is a two-bit operation. In each wire, a bit “flows” from left to right. All the
bits go at the same pace. When a gate is met, the corresponding operation is applied
on the wires attached to the gate. Since the gates are reversible, the overall circuit is
reversible by making the bits flow backward.

Choice of elementary gates. Many gates have been considered in the literature [24].
In this paper, we will consider multi-controlled-not gates. A not gate, represented by
⊕ , is flipping the value of the wire on which it is attached. The operator not

stands for the bit-flip operation. Given a gate F acting on n wires, a controlled-F is
a gate acting on n + 1 wires. The control can be positive or negative, represented

x • x

~y F

x ◦ x

~y F

respectively as shown on the right. In both cases, the
top wire is not modified. On the bottom wires, the
gate F is applied if x is true for the positive control,
and false for the negative control. Otherwise, no gate is applied: the values ~y flow
unchanged through the gate. A positively-controlled not gate will be denoted CNOT.

A reversible circuit runs a computation on some query: some input wires corre-
spond to the query, and some output wires correspond to the answer. The auxiliary
input wires that are not part of the query are initially fed with the boolean “false” (also
written 0).

3

Tf

0

x

f (x)

x

0 · · ·0
}

trace

(a) Landauer embedding of f .

Tg

0

x

g(x)

x

0 · · ·0

Th

0 h(g(x))

trace

0 · · ·0

(b) Composing two Landauer embeddings.

Figure 1: Landauer embeddings.

Computing with reversible circuits. As described by Landauer [16] and Bennett [3],
a conventional, classical algorithm that computes a boolean function f : bitn→ bitm

can be mechanically transformed into a reversible circuit sending the triplet (x,~0,~0) to
(x, trace, f (x)), as in Figure 1a. Its input wires are not modified by the circuit, and the
trace of all intermediate results are kept in garbage wires.

Because of their particular structure, two Landauer embeddings Tg and Th can be
composed to give a Landauer embedding of the composition h◦g. Figure 1b shows the
process: the wires of the output of Tg are fed to the input of Th, and the output of the
global circuit is the one of Th. The garbage wires now contain all the ones of Tg and Th.

Note that it is easy to build elementary Landauer embeddings for negation and
conjunction: the former is a negatively-controlled not while the latter is a positively
doubly-controlled not. Any boolean function can then be computed with Landauer
embeddings.

3 Reversible circuits as trace of programs
In this section, we present an implementation of Landauer embeddings to the context of
a higher-order functional programming language, and show how it can be understood
through an abstract machine.

3.1 Simple formalization of reversible circuits
A reversible circuit has a very simple structure. As a linear sequence of elementary
gates, it can be represented as a simple list of gates.

Definition 1. A reversible gate G is a term N(i ·b j1
1 . . .b jn

n) where i, j1,. . . , jn are natural
numbers such that for all k, i 6= jk, and where b1,. . . ,bn are booleans. If the list of b jk

k
is empty, we simply write N(i) in place of N(i ·). The wires of the gate N(i ·b j1

1 . . .b jn
n)

is the set of natural numbers {i, j1, . . . , jn}. The wire i is called active and the jk’s are
called the control wires. Given a list C of gates, the union of the sets of wires of the
elements of C is written Wires(C). Finally, the boolean values True and False flowing
in the wires are respectively represented with tt and ff throughout the paper.

Definition 2. A reversible boolean circuit is a triplet (I,C,O) where C is a list of
reversible gates and where I and O are sets of wires. The list C is the raw circuit, I
is the set of inputs wires and O the set of outputs wires. We also call Wires(C) \ I the
auxiliary wires and Wires(C)\O the garbage wires.

4

Executing a reversible circuit on a given tuple of booleans computes as follows.

Definition 3. Consider a circuit (I,C,O) and a family of bits (xi)i∈I . A valuation for
the circuit is an indexed family v = (v j) j∈Wires(C)∪I∪O of booleans. The execution of a
gate N(i ·b j1

1 . . .b jn
n) on the valuation v is the valuation w such that for all l 6= i, wl = vl

and wi = vi xor ∧n
k=1 (v jk xor bk xor tt) if n ≥ 1 and wi = not(vi) otherwise. The

execution of the circuit (I,C,O) with input (xi)i∈I is the succession of the following
operations: (1) Initialization of a valuation v such that for all k ∈ I, vk = xk, and for all
the other values of k, vk is false. (2) Execution of every gate in C on v, in reverse order.
(3) The execution of the circuit returns the sub-family (vk)k∈O.

3.2 A PCF-like language with lists of booleans
In this section, we present the functional language PCFlist that we use to describe the
regular computations that we eventually want to perform with a reversible circuit. The
language is simply-typed and it features booleans, pairs and lists.

M,N ::= x |λx.M |MN | 〈M,N〉 |π1(M) |π2(M) |skip |M;N |tt |ff |
if M then N else P |and |xor |not |inj1(M) |inj2(M) |
match P with (x 7→ M|y 7→ N) |splitA |Y (M) |Err,

A,B ::= bit |A⊕B |A×B |1 |A→ B | [A].

The language comes equipped with the typing rules of Table 1. There are several things
to note. First, the construct if -then -else can only output first-order types. A first
order type is a type from the grammar A0,B0 ::= bit |A0×B0 | [A0]. Despite the fact
that one can encode them with the test construct, for convenience we add the basic
boolean combinators not, xor and and. There are no constructors for lists, but instead
there is a coercion from 1⊕ (A× [A]) to [A]; the term split turns a list-type into a
additive type. There is a special-purpose term Err that will be used in particular in
Section 3.4 as an error-spawning construct. The boolean values True and False are
respectively represented with tt and ff. skip is the unit term and M;N is used as the
destructor of the unit. Finally, Y is a fixpoint operator. As we shall eventually work
with a call-by-value reduction strategy, we only consider fixpoints defining functions.

Notation 4. We write nil for inj1(skip) and M :: N in place of inj2(M×N). We also
write [M1, . . .Mn] for M1 :: . . . :: Mn :: nil. We also write general products 〈M1, . . . ,Mn〉
as 〈M1,〈. . .Mn . . .〉〉. Projections πi for i ≤ n extends naturally to n-ary products. We
write letrec f x = M in N for the term (λ f .N)(Y (λ f .λx.M)).

Remark 5. The typing rule of the if-then-else construct imposes a first-order
condition on the branches of the test. This will be clarified in Remark 19. For now,
let us just note that this constraint can be lifted with some syntactic sugar: if M
and N are of type A1 → . . .→ An, where An is first-order, then a “higher-order” test
if P then M else N can be defined using the native first-order test by an η-expansion
with the lambda-abstraction λx1 . . .xn.if P then Mx1 . . .xn else Nx1 . . .xn.

5

∆,x : A ` x : A ∆ ` tt : bit ∆ ` ff : bit ∆ ` skip : 1 ∆ ` Err : A

∆ ` not : bit→ bit ∆ ` and : bit×bit→ bit ∆ ` xor : bit×bit→ bit

∆ ` split : [A]→ 1⊕ (A× [A])

∆,x : A `M : B
∆ ` λx.M : A→ B

∆ `M : A1×A2

∆ ` πi(M) : Ai

∆ `M : Ai

∆ ` inji(M) : A1⊕A2

∆ `M : A→ B ∆ ` N : A
∆ `MN : B

∆ `M : A ∆ ` N : B
∆ ` 〈M,N〉 : A×B

∆ `M : 1 ∆ ` N : B
∆ `M;N : B

∆ ` P : A⊕B ∆,x : A `M : C ∆,y : B ` N : C

∆ ` match P with (xA 7→ M|yB 7→ N) : C
∆ `M : 1⊕ (A× [A])

∆ `M : [A]

∆ `M : A→ A
∆ ` Y (M) : A

∆ ` P : bit ∆ `M : C ∆ ` N : C the type C is first-order
∆ ` if P then M else N : C

Table 1: Typing rules of PCFlist.

(λx.M)N→M[N/x] πi〈M1,M2〉→Mi skip;M→M

if tt then M else N→M if ff then M else N→ N splitM→M

match inji(P) with (x1 7→ M1|x2 7→ M2)→Mi[P/xi] Y (M)→M(Y (M))

Table 2: Small-step semantics for PCFlist: reduction rules, acting on subterms.

3.3 Small-step semantics
We equip the language PCFlist with the smallest rewrite-system closed under subterm
reduction, satisfying the rewrite rules of Table 2, and satisfying the obvious rules re-
garding not, and and xor: for example, not tt→ ff and not ff→ tt. Note that the
term Err does not reduce. This is on purpose: it represents an error that one cannot
catch with the type system; in particular it will be used in Section 3.4. The usual safety
properties are satisfied, modulo the error-spawning term Err.

Definition 6. A value is a term V defined by the grammar λx.M | 〈U1,U2〉 |inji(U) |c,
where c is a constant term: skip, tt, ff.

Theorem 7 (Safety). Type preservation and progress are verified: (1) If ∆ ` M : A,
then for all N such that M→ N we also have ∆ ` N : A. (2) If M is a closed term of
type A then either M is a value, or M contains the term Err, or M reduces.

In summary, the language is well-behaved. It is also reasonably expressive, in the
sense that most of the computations that one could want to perform on lists of bits can
be described, as shown in Example 9.

Convention 8. When defining a large piece of code, we will be using a Haskell-like
notation. So instead of defining a closed function as a lambda-term on a typing judg-
ment, we shall be using the notation

6

function : type_of_the_function
function arg1 arg2 ... = body_of_the_function

Also, we shall use the convenient notation let x = M in N for (λx.N)M and the no-
tation let 〈x,y〉 = M in N for let z = M in let x = π1(z) in let y = π1(z) in N. Simi-
larly, we allow multiple variables for recursive functions, and we use pattern-matching
for lists and general products in the same manner.

Example 9 (List combinators). The usual list combinators can be defined. Here we
give the definition of foldl: (A → B → A) → A → [B] → A. The other
ones (such as map, zip. . .) are written similarly.

foldl f a l = letrec g z l’ = match (split l’) with
nil 7→ z

| 〈h,t〉 7→ g (f z h) t
in g a l

Example 10 (Ripple-carry adder). One can easily encode a bit-adder: it takes a carry
and two bits to add, and it replies with the answer and the carry to forward.

bit_adder : bit → bit → bit → (bit × bit)
bit_adder carry x y =

let majority a b c = if (xor a b) then c else a in
let z = xor (xor carry x) y in
let carry’ = majority carry x y in 〈carry’, z〉

Encoding integers as lists of bits, low-bit first, one can use the bit-adder to write a
complete adder in a ripple-carry manner, amenable to a simple folding. We use an
implementation similar to the one done in [23].

adder_aux : (bit × [bit]) → (bit × bit) → (bit × [bit])
adder_aux 〈w, cs〉 〈a, b〉 = let 〈w’, c’〉 = bit_adder w a b in 〈w’, c’::cs〉

adder : [bit] → [bit] → [bit]
adder x y = π2 (foldl adder_aux 〈ff, nil〉 (zip y x))

3.4 Reversible circuits from operational semantics
We consider the language PCFlist as a specification language for boolean reversible cir-
cuits in the following sense: A term of type x1 : bit, . . . ,xn : bit `M : bitm computes
a boolean function fM : bitn→ bitm.

In this section, we propose an operational semantics for the language PCFlist gen-
erating Landauer embeddings, as described in Section 2. The circuit is produced during
the execution of an abstract machine and partial evaluation of terms. Essentially, a term
reduces as usual, except for the term constructs handling the type bit, for which we
only record the operations to be performed. Formally, the definitions are as follows.

Definition 11. A circuit-generating abstract machine is a tuple consisting of (1) a
typing judgment p1 : bit, . . . , pn+k : bit ` M : bitm ; (2) a partial circuit RC :=
({1, . . . ,n},C) where C is a list of gates; (3) a one-to-one linking function mapping
the free variables pi of M to the wires Wires(C)∪{1, . . . ,n}.

Intuitively, {1, . . . ,n} is the set of input wires. The set of output wires is not yet
computed: we only get it when M is a value. If G is a gate, we write G :: (I,C) for
the partial circuit (I,G :: C). Given a judgment p1 : bit, . . . , pn : bit `M : bitm, the

7

(C[(λx.M)N],RC,L)→am (C[M[N/x]],RC,L)
(C[πi〈M1,M2〉],RC,L)→am (C[Mi],RC,L)

(C[skip;M],RC,L)→am (C[M],RC,L)
(C[splitM],RC,L)→am (C[M],RC,L)

(C[match inji(P) with (x1 7→ M1|x2 7→ M2)],RC,L)→am (C[Mi[P/xi]],RC,L)
(C[Y (M)],RC,L)→am (C[M(Y (M))],RC,L)

Table 3: Rewrite rules for circuit-generating abstract-machine: generic rules.

(C[ff],RC,L)→am (C[pi0],RC,L′) (C[tt],RC,L)→am (C[pi0],(N(i0)) :: RC,L′)

(C[not pi],RC,L)→am (C[pi0],N(i0 ·ff
i) :: RC,L′)

(C[and pi p j],RC,L)→am (C[pi0],N(i0 ·tt
itt j) :: RC,L′)

(C[xor pi p j],RC,L)→am (C[pi0],N(i0 · (i,tt)) :: N(i0 ·tt j) :: RC,L′)

(C[if pi then V else W],RC,L)→am{
(C[U],RC′,L′′) V and W of the same shape
C[Err] otherwise

Table 4: Rewrite rules for circuit-generating abstract-machines: rules for booleans

empty machine is (M,({1, . . . ,n},{}),{pi 7→ i | i = 1 . . .n}) and is denoted with
EmptyAM(M). The size of the domain of a linking function L is written](L).

By abuse of notation, we shall write abstract machine with terms, and not typing
judgements. It is assumed that all terms are well-typed according to the definition.

Definition 12. Given a linking function L, a first-order extension of L consists of a term
of shape M ::= pi | 〈M1, . . .Mn〉 | [M1, . . .Mn], where the pi’s are in the domain of L. We
say that two first-order extensions of L have the same shape provided that they are both
products with the same size or lists with the same size such as their components have
pairwise the same shape.

The set of circuit-generating abstract machines is equipped with a rewrite-system
(→am) defined using a notion of beta-context C[−], that is, a term with a hole, as
follows.

[−] |λx.C[−] |(C[−])N |M(C[−]) | 〈C[−],N〉 | 〈M,C[−]〉 |
π1(C[−]) |π2(C[−]) |C[−];N |M;C[−] |if C[−] then N else P |
ifM then C[−] elseP|ifM thenN else C[−] |inj1(C[−]) |inj2(C[−]) |
match C[−] with (x 7→ M|y 7→ N) |match P with (x 7→ C[−]|y 7→ N) |
match P with (x 7→ M|y 7→ C[−]) |Y (C[−]).

The constructor [−] is the hole of the context. Given a context C[−] and a term M, we
define C[M] as the variable-capturing substitution of the hole [−] by M.

8

The rewrite rules can then be split in two sets. The first set concerns all the term
constructs unrelated to the type bit. In these cases, the state of the abstract machine
is not modified, only the term is rewritten. The rules, presented in Table 3, are the
same as for the small-step semantics of Table 2: apart from the two rules concerning
if-then-else, all the others are the same.

The second set of rules concerns the terms dealing with the type bit, and can be
seen as partial-evaluation rules: we only record in the circuit the operations that would
need to be done. The rules are shown in Table 4. The linking function L′ is L∪{pi0 7→
i0}, where i0 is a new wire. The variable pi0 is assumed to be fresh. For the case of the
if-then-else, we assume V and W are first-order extensions of L with the same shape.
The term U is a first-order extension of L with the same shape as V and W containing
only (pairwise-distinct) free variables and mapping to new distinct garbage wires. L′′

is L updated with this new data. Suppose that V contains the variables v1, . . .vk, that W
contains the variables w1, . . .wk and that U contains the variables u1, . . .uk. Then RC′ is
RC with the following additional series of gates: N(u j ·ttpittvi)) and N(u j ·ffpittwi).

Remark 13. Note that the set I is never modified by the rules

Safety properties hold for this new semantics, in the sense that the only error un-
caught by the type system is the term Err that might be spawned.

Theorem 14 (Type preservation). If p1 : bit, . . . , p](L) : bit `M : bitm, if (M,RC,L)
is an abstract machine and if (M,RC,L)→am (N,RC′,L′), then we have the judgement
p1 : bit, . . . , p](L′) : bit ` N : bitm.

Theorem 15 (Progress). Suppose that p1 : bit, . . . , p](L) : bit `M : bitm is valid and
that (M,RC,L) is an abstract machine. Then either M is a value, or M contains Err,
or (M,RC,L) reduces through (→am).

3.5 Simulations
The abstract machine M generates a circuit computing the same function as the small-
step reduction of M in the following sense.

Definition 16. Let (M,(I,C),L) be an abstract machine. We write C(M,(I,C),L) for
the circuit defined as (I,C,Range(L)). Let (vk)k∈Range(L) be the execution of the circuit
C(M,(I,C),L) on the valuation~u = (ui)i∈I . We define T (M,(I,C),L)(~u) as the term M
where each free variable x has been replaced with vL(x).

Intuitively, if (M,RC,L) is seen as a term where some boolean operations have been
delayed in RC, then T (M,RC,L) corresponds to the term resulting from the evaluation
of the delayed operations.

Theorem 17. Consider a judgment x1 : bit, . . . ,xn : bit `M : bitm and suppose that
EmptyAM(M)→am

∗ (〈pi1 , . . . pik〉,(I,C),L). Then k =m, and provided that~u= (bi)i∈I ,
the term T (〈pi1 , . . . pik〉,(I,C),L)(~u) is equal to 〈c1, . . .cm〉 if and only if the term
let 〈x1, . . .xn〉 = 〈b1, . . .bn〉 in M reduces to 〈c1, . . .cm〉.

The proof is done using an invariant on a single step of the rewriting of abstract
machines, stated as follows.

9

Lemma 18. Consider a judgment x1 : bit, . . . ,xn : bit `M : bitm and suppose that
(M,(I,C),L)→am (N,(I,C′),L′). Let ~u = (ui)i∈I be a valuation. Then either the term
T (M,(I,C),L)(~u) is equal to T (N,(I,C′),L′)(~u) if the rewrite corresponds to the elimi-
nation of a boolean tt or ff, or T (M,(I,C),L)(~u)→ T (N,(I,C′),L′)(~u), or N contains
the error term Err.

Proof of Theorem 17. If EmptyAM(M)→am
∗ (〈pi1 , . . . pik〉,(I,C),L), then there is a se-

quence of intermediate rewrite steps where none of the terms involved is the term Err.
From Lemma 18, one concludes that for all valuations~u on I, T (EmptyAM(M))(~u)→∗
T (〈pi1 , . . . pik〉,(I,C),L)(~u). Choosing ~u = (bi)i∈I , T (EmptyAM(M))(~u) is the term M
where each free variable pi j has been substituted with its corresponding boolean bi j .
Similarly, T (〈pi1 , . . . pik〉,(I,C),L) is equal to the value〈bi1 , . . .bik〉. We can conclude
the proof by remarking that the term let 〈x1, . . .xn〉 = 〈b1, . . .bn〉 in M reduces to M
where each of the free variables pi j have been substituted with bi j , that is, the term
T (EmptyAM(M))(~u).

One would have also hoped to have a simulation result in the other direction, stating
that if a (closed) term M : bitm reduces to a tuple of booleans, then EmptyAM(M)
generates a circuit computing the same tuple. Unfortunately this is not the case, and
the reason is the particular status of the type bit and the way the if-then-else
behaves.

Remark 19. Let us re-visit the first-order constraint of the if-then-else discussed
in Remark 5 in the light of this operational semantics. Here, this test behaves as a reg-
ular boolean operator acting on three arguments: they need to be all reduced to values
before continuing. This test is “internal” to the circuit: both branches are evaluated
during a run of the program. Because it is “internal”, the type of the branches have
to be “representable”: thus the constraint on first-order. This test does not control the
execution of the program: its characteristic only appears at circuit-evaluation time.

With this operational semantics, it is also interesting to note that there are two
kinds of booleans: the “internal” type bit, and the “external” type defined e.g. as
bool = 1⊕1. If the former does not control the flow, the latter does with the match
constructor. And unlike if-then-else, match does not have type constraints on its
branches.

The term Err can be explained in the light of this discussion. Thanks to the con-
dition on the shape of the output branches of the test, it is used to enforce the fact that
bit cannot be coerced to a bool. Indeed, consider the term if b then nil else [tt]:
using a match against the result of the test, it would allow one to use the bit b for
controlling the shape of the rest of the circuit. As there is not such construct for re-
versible circuits, it therefore has to be forbidden: it is not possible to control the flow
of execution of the program through the type bit. And the fact that a well-typed term
can produce an error is simply saying that the type-system is not “strong enough” to
capture such a problem. It is very much related to the fact that the zip operator on
lists cannot be “safely” typed without dependent types.

10

4 Internalizing the abstract machine
Instead of defining an external operational semantics as we did in Section 3.4, one can
internalize the definition of circuits in the language PCFlist. Given a program, provided
that one chooses a reduction strategy, one can simulate the abstract-machine semantics
inside PCFlist using a generic monadic lifting, close to what was proposed in [31].

4.1 Monadic lifting
Before going ahead with the full abstract-machine semantics, we present the monadic
lifting of PCFlist for a monadic function-type. It is the transposition of Haskell’s mon-
ads to our language PCFlist. The main characteristic of the reversible abstract-machine
is to change the operational behavior of the type bit: the terms tt, ff, the inline bit-
combinators and the term construct if -then -else do not reduce as regular lambda-
terms. Instead, they trigger a side-effect, which can be simulated within a monad.

Definition 20. A monad is a function-type M (−) together with two terms returnA
M :

A→M (A) and appA,B
M : M (A)→ (A→M (B))→M (B). A reversible-circuit monad

is a monad together with a type wire and the terms mttM ,mffM : M (wire), mifA
M :

wire→M (A)→M (A)→M (A), and mnotA
M : M (wire→M (wire)), and finally

mandA
M ,mxorA

M : M (wire×wire→M (wire)).

Definition 21. Given a reversible-circuit monad M , we inductively define the M -
monadic lifting of a type A, written LiftM (A). We omit the index M for legibility.

Lift(bit) = wire, Lift(1) = 1,

Lift(A→ B) = Lift(A)→M (Lift(B)), Lift(A×B) = Lift(A)×Lift(B),

Lift(A⊕B) = Lift(A)⊕Lift(B), Lift([A]) = [Lift(A)].

The M -monadic lifting of a term M, denoted with LiftM (M), is defined as follows.
First, we set Lift(tt) = mtt, Lift(ff) = mff, Lift(and) = mand, Lift(xor) = mxor and
Lift(not) = mnot. Then

Lift(x) = return x, Lift(skip) = return skip,

Lift(λx.M) = return λx.Lift(M), Lift(split) = return λx.return (splitx),

Lift(MN) = app Lift(M) λx.app Lift(N) λy.xy,

Lift(〈M,N〉) = app Lift(M) λx.app Lift(N) λy.return 〈x,y〉,
Lift(πi(M)) = app Lift(M) λx.return πi(x),

Lift(inji(M)) = app Lift(M) λx.return inji(x),

Lift(M;N) = app Lift(M) λx.app Lift(N) λy.return x;y,
Lift(match P with (z1 7→M|z2 7→N)) =

app Lift(P) λx.match x with (z1 7→Lift(M)|z2 7→Lift(N)),

Lift(Y (M)) =

app Lift(M) λ f .return (Y (λy.λ z.app(yskip) f))skip

Lift(ifPthenM elseN) = app Lift(P) λx.((mif x) Lift(M)) Lift(N)

11

Remark 22. Note that in this definition of the lifting, we followed a call-by-value
approach: the argument N : LiftM (A) of a function M : A→ LiftM (B) is first reduced
to a value before being fed to the function. This will be discussed in Section 4.3.

The fact that a monad is equipped with mtt, mff, mxor, mand, mnot and mif is not
a guarantee that the lifting will behave as expected. One has to choose the right monad
for it. It is the topic of Section 4.2. However, in general this monadic-lifting operation
preserves types (proof by induction on the typing derivation).

Theorem 23. Provided that x1 : A1, . . . ,xn : An ` M : B is valid, so is the judgment
x1 : LiftM (A1), . . . ,xn : LiftM (An) ` LiftM (M) : M (LiftM (B)).

4.2 Reversible circuits from monadic lifting
All the structure of the abstract machine can be encoded in the language PCFlist. A
wire is a natural number. A simple way to represent them is with the type wire := [1].
The number 0 is the empty list while the successor of n is (skip :: n). A gate is then
gate := wire× [wire×bit]. A raw circuit is [gate].

We now come to the abstract machine. In the formalization of Section 3.4, we
were using a state with a circuit and a linking function. In this internal representation,
the linking function is not needed anymore: the computation directly acts on wires.
However, the piece of information that is still needed is the next fresh value. The state
is encapsulated in state := [gate]×wire. Finally, given a type A, we write circ(A)
for the type state→ (state×A): this is a computation generating a reversible circuit.

The type operator circ(−) can be equipped with the structure of a reversible-
circuit monad, as follows. First, it is obviously a state-monad, making the two first
constructs automatic:

return := λx.λ s.(s,x) and app := λx f .λ s.let 〈s′,a〉 = xs in (f a)s′.

The others are largely relying on the fact that PCFlist is expressive enough to emulate
what was done in Section 3.4. Provided that S stands for the successor function, we
can mff as the lambda-term λ s.let 〈c,w〉 = s in 〈〈c,Sw〉,w〉 and mtt as the lambda-
term λ s.let 〈c,w〉 = s in 〈〈〈w,nil〉::c,Sw〉,w〉. Note how the definition reflects the
reduction rules corresponding to tt and ff in Table 4: in the case of ff, the returned
wire is the next fresh one, and the state is updated by increasing the “next-fresh” value
by one unit. In the case of tt, on top of this we add a not-gate to the list of gates in
order to flip the value of the returned wire. The definitions of mnot, mand and mxor

are similar. For mif, one capitalizes on the fact that we know the structure of the
branches of the test, as they are of first-order types. One can then define a zip-operator
A0×A0→ A0 for each first-order type A0.

4.3 Call-by-value reduction strategy
As was mentioned in Remark 22, the monadic lifting intuitively follows a call-by-
value approach. It can be formalized by developing a call-by-value reduction strategy

12

(E[(λx.M)V],RC,L)→cbv (E[M[V/x]],RC,L)

(E[πi〈V1,V2〉],RC,L)→cbv (E[Vi],RC,L)

(E[skip;M],RC,L)→cbv (E[M],RC,L)

(E[splitV],RC,L)→cbv (E[V],RC,L)

(E[match inji(V) with (x1 7→ M1|x2 7→ M2)],RC,L)

→cbv (E[Mi[V/xi]],RC,L)

(E[Y (λx.M)],RC,L)→cbv (E[M[Y (λx.M)/x]],RC,L)

Table 5: Call-by-value for circuit-generating abstract-machine: generic rules.

(E[ff],RC,L)→cbv (E[pi0],RC,L′) (E[tt],RC,L)→cbv (E[pi0],(N(i0)) :: RC,L′)

(E[not pi],RC,L)→cbv (E[pi0],N(i0 ·ff
i) :: RC,L′)

(E[and pi p j],RC,L)→cbv (E[pi0],N(i0 ·tt
itt j) :: RC,L′)

(E[xor pi p j],RC,L)→cbv (E[pi0],N(i0 · (i,tt)) :: N(i0 ·tt j) :: RC,L′)

(E[if pi then V else W],RC,L)→cbv{
(E[U],RC′,L′′) V and W of the same shape
Err otherwise

Table 6: Call-by-value for circuit-generating abstract-machines: rules for booleans

for circuit-abstract machines. Such a definition follows the one of the reduction pro-
posed in Section 3.4: we first design a notion of call-by-value evaluation context E[−]
characterizing the call-by-value redex that can be reduced.

Definition 24. A call-by-value context is a beta-context with the following grammar

E[−] ::= [−] |(E[−])N |V (E[−]) | 〈E[−],N〉 | 〈V,E[−]〉 |
π1(E[−]) |π2(E[−]) |E[−];N |V ;E[−] |if E[−] then N else P |
if V then E[−] else P |if V then W else E[−] |inj1(E[−]) |
inj2(E[−]) |match E[−] with (x 7→ M|y 7→ N) |Y (E[−]).

We define the call-by-value reduction strategy on circuit-generating abstract machines
as shown in Tables 5 and 6.

Remark 25. Essentially, the generic rules of Table 3 are turned into their call-by-value
version in the standard way. For example, we require that (E[(λx.M)V],RC,L)→cbv
(E[M[V/x]],RC,L) happens only when V is a value. Similarly, the rules of Table 4 are
reflected in Table 6, replacing C[−] with E[−].

Remark however that the reduction strategy does not exactly match the rewrite
system (→am) in one special case:the rewrite rule concerning the fixpoint. We chose
to modify it in order for the fixpoint to behave in a call-by-value manner: we em-
bedded two steps of (→am) into one step of the strategy. One can then show that if
(M,RC,L)→cbv (M′,RC′,L′) then (M,RC,L)→am

∗ (M′,RC′,L′).

13

In the light of this reduction strategy and of the monadic lifting of the previous
section, one can now formalize what was mentioned in Remark 22. First, one can turn
an abstract machine into a lifted term.

Definition 26. Let x1 : bit, . . . ,xn+k : bit `M : B and let (M,(C, I),L) be an abstract
machine where I = {1 . . .n}. Then we define Lift(M,(C, I),L) as the term(

Lift(M)[L(xn+1)/xn+1 . . .L(xn+k)/xn+k]
)
〈C,Smax(Range(L))〉,

where C is the representation of C as a term of type [gate]×wire, and where n with n
an integer is the representation of n as a term of type [1].

Then, provided that 'β stands for the reflexive, symmetric and transitive closure
of the beta-reduction on terms and choosing M and (M,(C, I),L) as in Definition 26:

Theorem 27. Suppose that (M,RC,L)→cbv (M′,RC′,L′). Then Lift(M,RC,L) is beta-
equivalent to Lift(M′,RC′,L′).

Provided that the beta-reduction is confluent, this essentially says that the abstract-
machine semantics can be simulated with the monadic lifting.

Corollary 28. If `M : bitm and EmptyAM(M)→cbv (〈x1, . . .xm〉,(C, I),L), then the
term π1(Lift(M)) is beta-equivalent to C, where C is the representation of C as a term,
as described in Definition 26.

5 Synthesis of quantum oracles
A rapid explanation is needed here: In quantum computation, one does not deal with
classical bits but with the so-called quantum bits. At the logical level, a quantum
algorithm consists of one or several quantum circuits, that is, reversible circuits with
quantum bits flowing in the wires.

Quantum algorithms are used to solve classical problems. For example: factoring
an integer [28], finding an element in a unordered list [19], finding the solution of
a system of linear equations [13], finding a triangle in a graph [17], etc. In all of
these algorithms, the description of the problem is a completely non-reversible function
f : bitn→ bitm and it has to be encoded as a reversible circuit computing the function
f̄ : bitn×bitm → bitn×bitm sending (x,y) to (x,yxor f (x)), possibly with some
auxiliary wires set back to 0.

Tf

0

x

•

x

0 · · ·0 T -1
f

y ⊕ yxor f (x)

back to
state 0A canonical way to produce such a circuit

is with a Bennett embedding. The procedure is
shown on the right. First the Landauer embedding Tf of f is applied. Then the output
of the circuit is xor’d onto the y input wires, and finally the inverse of Tf is applied. In
particular, all the auxiliary wires are back to the value 0 at the end of the computation.

The method we propose in this paper offers a procedure for generating the main
ingredient of this construction: the Landauer embedding. One just has to encode the
problem in the language PCFlist (or extension thereof), possibly test and verify the
program, and generate a corresponding reversible circuit through the monadic lifting.
Theorems 17 and 28 guarantee that the monadic lifting of the program will give a
circuit computing the same function as the original program.

14

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 2: Reversible adder for 4-bit integers.

This algorithm was implemented within the language Quipper, and used for non-
trivial oracles [23, 11]. Note that Quipper is not the only possible back-end for this
generic monadic lifting: nothing forbids us to write a back-end in, say, Lava [6].

Example 29. The first example of code we saw (Example 10) computes an adder. One
can run this code to generate a reversible adder: Figure 2 shows the circuit generated
when fed with 4-bits integers. One can see 4 blocks of pairs of similar shapes.

Example 30. In the oracle for the QLSA algorithm [13, 27], one has to solve a sys-
tem of differential equations coming from some physics problem using finite elements
method. The bottom line is that it involves analytic functions such as sine and atan2.

Using fixed-point real numbers on 64 bits, we wrote a sine function using a Tay-
lor expansion approximation. In total, we get a reversible circuit of 7,344,140 multi-
controlled gates (with positive and negative controls). The function atan2 was de-
fined using the CORDIC method. The generated circuit contains 34,599,531 multi-
controlled gates. These two functions can be found in Quipper’s distribution [23].

5.1 Efficiency of the monadic lifting
The monadic lifting proposed in this paper generates circuits that are efficient in the
sense that the size of a generated circuit is linear in the number of steps it takes to
evaluate the corresponding program. This means that any program running in polyno-
mial time upon the size of its input generates a polynomial-sized circuit. Without any
modification or optimization whatsoever, the technique is therefore able to generate
an “efficient” circuit for an arbitrary, conventional algorithm. This is how the circuit
for the function sine cited in Example 30 was generated: first, a conventional imple-
mentation was written and tested. When ready the lifting was performed, generating a
circuit.

5.2 Towards a complete compiler
Compared to other reversible compilers [21], the approach taken in this paper consid-
ers the construction of the circuit as a process that can be completely automatized: the
stance is that it should be possible to take a classical, functional program with conven-
tional inductive datatypes and let the compiler turn it into a reversible circuit without

15

1

2

3

a

b

c

Figure 3: Adder of 1-bit integers, with potential optimizations highlighted

having to interfer (or only marginally). We do not claim to have a final answer: we
only aim at proposing a research path towards such a goal.

A first step towards a more complete compiler for PCFlist would involve optimiza-
tion passes on the generated circuits. Indeed, as can be inferred from a quick analysis of
Figure 2, if monadic lifting generates efficient circuits it does not produces particularly
lean circuits.

5.3 Towards optimization of generated circuits
There is a rich literature on optimization of reversible circuits [24, 29, 18], some also
considering positive and negative controls [30]. All of these works are relevant for
reducing the size of the circuits we get.

The purpose of this section is not to aggressively optimize the circuits we get from
the monadic lifting, but instead to reason on the particular shapes we obtain from this
monadic semantics. If the reduction of a lambda-term into a reversible circuit is so
verbose, it is partly due to the fact that garbage wires are created for every single inter-
mediate result. We aim at pointing out the few optimization rules stemming from the
circuit generation and reflecting these low-level optimizations to high-level program
transformations.

The reversible adder of Figure 2 is very verbose. By applying the simple optimiza-
tion schemes presented in this section, one gets the smaller circuit of Figure 5. One
clearly sees the carry-ripple structure, and it is in fact very close to known reversible
ripple-carry adders (see e.g. [8]). In the following discussion, we hint at how program
transformations could be applied in order to get a circuit of compactness similar to the
one obtained from the low-level circuit rewrites.
Algebraic optimizations. Let us consider the example of the 1-bit adder of Figure 3,
from the code of Example 10. Three simple potential optimizations are highlighted.

In general, these optimizations require to have a knowledge of the value of the bits
flowing in the wires (e.g. Dashed Box 2). Since there are input wires, this information
needs to be kept in algebraic form, as a function of the input wires. Of course, for
non-trivial circuits this means actually computing the circuit.

However, because of the shape of the generated circuit, instead of a complete al-
gebraic form, for the purpose of circuit simplification it is often enough to keep only
partial algebraic information about the wires. To each piece of wire, we essentially
keep a limited knowledge of the past operations.

16

Dashed Box 1. Gates acting on wires of known constant value. The gate will never
fire as the control will always be negative. The gate can be removed.

From the perspective of the code the circuit comes from, this situation typically
occurs when constant booleans are manipulated, for example with the term xorffff.
Dashed Box 2. Copy of one wire to another one. Provided that the controlled wire is
never controlled later on, one can remove the gate and move all the controls and gates
of the bottom wire to the top wire.

The fact that the wire is not used later on means that the particular intermediate
result is never used again: From the point of view of the program it means that this
particular result is only used linearly. The typical case where this occurs is in a term
such as and(not(andxy))z. A garbage wire is created to hold the result of the not,
but this is not needed as this intermediate result is not going to be reused. Instead one
can directly apply a not-gate on the result of andxy.
Dashed Box 3. Here, c = axorb. The two CNOTs can be replaced with only one
connecting wires a and b, and one could have removed wire c altogether. Again, some
care must be taken: the new active wire should not be controlled later on (ruling out
wire a), and the controls and actions of wire c should be moved to the new active wire.

This situation can also be understood as a linearity constraint on the program side.
Reduction strategies and garbage wires. The call-by-value reduction strategy we
follow sometimes computes unused intermediate results, therefore generating gates
acting on unused wires. One can safely discard such gates.

Note that the abstract machine is agnostic to the choice of reduction strategy. In
general, depending on the chosen reduction path, the generated circuits do not have
the same size and shape. Consider the term x : bit ` (λy.and y y)(not x) : bit. A
call-by-value reduction strategy first evaluate the argument, and then feeds the outputx ◦ x

0 ⊕ not x • not x

0 ⊕ not x.

value to the and operator. Since having the same variable
y means that the two controlling wires collapsed, we get
the circuit presented on the right: not x is the output of the circuit, which is the meaning
of the lambda-term.

With a call-by-name strategy, the term instead reduces to the following circuit. Thex ◦ ◦ x

0 ⊕ not x • not x

0 ⊕ not x • not x

0 ⊕ (not x) and (not x)

last wire is the output wire, the other wires
are garbage wires. Of course, we get the
same result: (not x) and (not x) and not x
are indeed the same boolean value. However,
note that the circuit is different than the one generated by a call-by-value strategy. In
general, call-by-name tends to generate larger circuits as arguments are duplicated and
evaluated several times. The case where it is not true is when the argument of a function
is not used: in call-by-value, the argument would generate a piece of circuit, whereas
in call-by-name, since it would not be evaluated, the argument would leave no trace on
the circuit.
Optimizations by shuffling. A less obvious circuit modification is to send CNOT
gates as far as possible to the right, by swapping the order of gates. This is again a
side-effect of the particular shape of the generated circuit.

If it does not decrease the size the circuit, it is able to reveal places where alge-
braic optimizations can be performed. For example, consider the circuit in Figure 4a.

17

St
ar

t c
la

ss
ic

al
 c

ir
cu

it in[0]

in[1]

in[2]

in[3]

0

0

E
nd

 c
la

ss
ic

al
 c

ir
cu

it

out[0]

out[1]

(a) Circuit waiting for shuffling.

St
ar

t c
la

ss
ic

al
 c

ir
cu

it in[0]

in[1]

in[2]

in[3]

0

E
nd

 c
la

ss
ic

al
 c

ir
cu

it

out[0]

out[1]

(b) After the shuffling.

Figure 4: Circuit optimized with and without shuffle.

S
ta

rt
 c

la
ss

ic
a
l

c
ir

c
u
it in[0]

in[1]

in[2]

in[3]

in[4]

in[5]

in[6]

in[7]

0

0

0

E
n
d
 c

la
ss

ic
a
l

c
ir

c
u
it out[0]

out[1]

out[2]

out[3]

Figure 5: Reversible adder for 4-bit integers, optimized.

The two first CNOTs can be moved to the far right-end, becoming a hidden CNOT
(as Dashed Box 2 of Figure 3) : they are merged into one single CNOT and the first
auxiliary wire is removed. We get the circuit in Figure 4b.

The corresponding program transformation modifies the term

let z1 = xorxy in let z2 = f (x,y) in g(z1,z2)

to
let z2 = f (x,y) in let z1 = xorxy in g(z1,z2).

As g does not use x nor y, one of the algebraic optimization might apply.

Example 31. By applying these optimization schemes on the reversible adder of Fig-
ure 2, one gets the circuit presented in Figure 5. One can now clearly see the carry-
ripple structure, and it is in fact very close to known reversible ripple-carry adders (see
e.g. [8]). These optimizations were implemented in Quipper: applied on larger circuits
such as the ones of Example 30, we get in general a size reduction by a factor of 10.

6 Conclusion and future work
In this paper, we presented a simple and scalable mechanism to turn a higher-order
program acting on booleans into into a family of reversible circuits using a monadic
semantics. The main feature of this encoding is that an automatically-generated circuit
is guaranteed to perform the same computation as the original program. The classical
description we used is a small PCF-like language, but it is clear from the presentation
that another choice of language can be made. In particular, an interesting question
is whether it is possible to use a language with a stronger type system for proving
properties of the encoded functions.

A second avenue of research is the question of the parallelization of the generated
circuits. The circuits we produce are so far completely linear. Following the approach

18

in [9], using parallel higher-order language might allow one to get parallel reversible
circuits, therefore generating circuits with smaller depths.

Finally, the last avenue for research is the design of generic compiler with a ded-
icated code optimizations. Indeed, an analysis of the specific optimizations described
in Section 5.3 suggests that these could be designed at the level of code, therefore au-
tomatically generating leaner circuits up front. This opens the door to the design of
specific type systems and code manipulations in a future full compiler. and back-end,
specific circuit optimizations.

References
[1] S. Abramsky. A structural approach to reversible computation. Theor. Comput.

Sci., 347(3):441–464, 2005.

[2] A. Ambainis, A. M. Childs, et al. Any AND-OR formula of size n can be eval-
uated in time n

1
2+o(1) on a quantum computer. SIAM J. Comput., 39:2513–2530,

2010.

[3] C. H. Bennett. Logical reversibility of computation. IBM J. Res. Dev., 17:525–
532, 1973.

[4] G. Berry. The foundations of esterel. In Proof, Language, and Interaction, Essays
in Honour of Robin Milner. MIT Press, 2000.

[5] T. Braibant and A. Chlipala. Formal verification of hardware synthesis. In Com-
puter Aided Verification, volume 8044 of LNCS, pp. 213–228, 2013.

[6] K. Claessen. Embedded Languages for Describing and Verifying Hardware. PhD
thesis, Chalmers University of Technology and Göteborg University, 2001.

[7] K. Fazel, M.A. Thornton, and J. E. Rice. ESOP-based Toffoli gate cascade gen-
eration. In Proc. PacRim, pp. 206–209, 2007.

[8] R. P. Feynman. Quantum mechanical computers. Optics News, 11:11–20, 1985.

[9] D. R. Ghica. Geometry of synthesis. In Proc. POPL, pp. 363–375, 2007.

[10] J.-Y. Girard. Towards a geometry of interaction. Contemp. Math., 92:69–108,
1989.

[11] A. S. Green, P. L. Lumsdaine et al., Quipper: a scalable quantum programming
language. In Proc. PLDI, pp. 333–342, 2013.

[12] P. Gupta, A. Agrawal, and N. K. Jha. An algorithm for synthesis of reversible
logic circuits. IEEE Trans. on CAD of Int. Circ. and Sys., 25(11):2317–2330,
2006.

[13] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems
of equations. Phys. Rev. Lett., 103(15):150502, 2009.

19

[14] Roshan P. James and A. Sabry. Information effects. In Proc. POPL, pp. 73–84,
2012.

[15] W. Kluge. A reversible SE(M)CD machine. In Proc. IFL, LNCS 1868, pp. 95–
113, 1999.

[16] R. Laundauer. Irreversibility and heat generation in the computing process. IBM
J. Res. Dev., 5:261–269, 1961.

[17] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle
problem. SIAM J. Comput., 37(2):413–424, 2007.

[18] D. Maslov, G. W. Dueck, and D. M. Miller. Fredkin/Toffoli templates for re-
versible logic synthesis. In Proceedings of ICCAD, pp. 256–261, 2003.

[19] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge Univ. Press, 2002.

[20] R. S. Nikhil. Bluespec: A general-purpose approach to high-level synthesis based
on parallel atomic transactions. In High-Level Synthesis, pp. 129–146. Springer,
2008.

[21] A. Parent, M. Roetteler, and K. M. Svore. Reversible circuit compilation with
space constraints. arXiv:1510.00377, 2015.

[22] S. Park, J. Kim, and H. Im. Functional netlists. In Proc. ICFP, pp. 353–366,
2008.

[23] Quipper. http://www.mathstat.dal.ca/˜selinger/quipper/.

[24] M. Saeedi and I. L. Markov. Synthesis and optimization of reversible circuits – a
survey. ACM Comput. Surv., 45(2):21:1–21:34, March 2013.

[25] Y. Sanaee, M. Saeedi, and M. S. Zamani. Shared-pprm: A memory-efficient
representation for boolean reversible functions. In Proc. of ISVLSI, pp. 471–474,
2008.

[26] I. Sander. System Modeling and Design Refinement in ForSyDe. PhD thesis,
Royal Institute of Technology, Stockholm, Sweden, 2003.

[27] A. Scherer, B. Valiron et al. Resource analysis of the quantum linear system
algorithm. arXiv:1505.06552, 2015.

[28] P Shor. Algorithms for quantum computation: discrete logarithm and factoring.
In Proc. FOCS, 1994.

[29] M. Soeken, S. Frehse et al. RevKit: An open source toolkit for the design of
reversible circuits. In Proc. RC, vol. 7165 of LNCS, pp. 64–76, 2012.

[30] M. Soeken and M. K. Thomsen. White dots do matter: Rewriting reversible logic
circuits. In Proc. RC, vol. 7948 of LNCS, pp. 193–208, 2013.

20

http://arxiv.org/abs/1510.00377
http://www.mathstat.dal.ca/~selinger/quipper/
http://arxiv.org/abs/1505.06552

[31] N. Swamy, N. Guts et al. Lightweight monadic programming in ML. In Proc.
ICFP, pp. 15–27, 2011.

[32] K. Terui. Proof nets and boolean circuits. In Proc. LICS, pp. 182–191, 2004.

[33] M. K. Thomsen. A functional language for describing reversible logic. In Proc.
FDL, pp. 135–142, 2012.

[34] R. Wille, D. Große, et al.. RevLib: An online resource for reversible functions
and reversible circuits. In Int’l Symp. on Multi-Valued Logic, pp. 220–225, 2008.

[35] R. Wille, H. M. Le, G. W. Dueck, and D. Grosse. Quantified synthesis of re-
versible logic. In Proc. DATE, pp. 1015–1020, 2008.

[36] R. Wille, S. Offermann, and R. Drechsler. SyReC: A programming language for
synthesis of reversible circuits. In Forum on Specification Design Languages, pp.
1–6, 2010.

21

	1 Introduction
	2 Reversible circuits
	3 Reversible circuits as trace of programs
	3.1 Simple formalization of reversible circuits
	3.2 A PCF-like language with lists of booleans
	3.3 Small-step semantics
	3.4 Reversible circuits from operational semantics
	3.5 Simulations

	4 Internalizing the abstract machine
	4.1 Monadic lifting
	4.2 Reversible circuits from monadic lifting
	4.3 Call-by-value reduction strategy

	5 Synthesis of quantum oracles
	5.1 Efficiency of the monadic lifting
	5.2 Towards a complete compiler
	5.3 Towards optimization of generated circuits

	6 Conclusion and future work

