Abstract
The notion of reversible computing is attracting interest because of its applications in diverse fields, in particular the study of programming abstractions for fault tolerant systems. Reversible CCS (RCCS), proposed by Danos and Krivine, enacts reversibility by means of memory stacks. Ulidowski and Phillips proposed a general method to reverse a process calculus given in a particular SOS format, by exploiting the idea of making all the operators of a calculus static. CCSK is then derived from CCS with this method. In this paper we show that RCCS is at least as expressive as CCSK.
Research partly supported by the EU COST Action IC1405.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E.: Experimental verification of Landauer’ s principle linking information, thermodynamics. Nature 483(7388), 187–189 (2012)
Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)
Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)
Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In: Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol. 8411, pp. 370–384. Springer, Heidelberg (2014)
Krivine, J.: A verification technique for reversible process algebra. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 204–217. Springer, Heidelberg (2013)
Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)
Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 370–390. Springer, Heidelberg (2013)
Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980)
Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance in large parallel systems - evaluating the potential gains and systems effects. Cluster Comput. 17(2), 303–313 (2014)
Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013)
Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Program. 73(1–2), 70–96 (2007)
Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Medić, D., Mezzina, C.A. (2016). Static VS Dynamic Reversibility in CCS. In: Devitt, S., Lanese, I. (eds) Reversible Computation. RC 2016. Lecture Notes in Computer Science(), vol 9720. Springer, Cham. https://doi.org/10.1007/978-3-319-40578-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-40578-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40577-3
Online ISBN: 978-3-319-40578-0
eBook Packages: Computer ScienceComputer Science (R0)