Skip to main content

Visualization of Individual Ensemble Classifier Contributions

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2016)

Abstract

Ensembles of classifiers are usually considered a valuable approach in different scenarios. A broad range of methods to deal with the construction, diversity and combination of multiple predictive models have been extensively studied. While the focus is often to obtain more accurate and robust predictions than single models seldom the individual contribution of classifiers which could contribute to a better understanding of the uncertainty associated with ensembles’ outputs is taken into account. In this work we look into this issue and focus on evaluating the individual ensemble classifier contributions using several scenarios. We propose a visual web model that allows for the evaluation of both individual contributions as well as their interactions. We apply the proposed approach on a benchmark dataset and show how it can visually be used to better understand the uncertainty associated with the construction of ensembles, presenting some insight on the individual contributions and interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, L., Wang, L.: What has my classifier learned? visualizing the classification rules of bag-of-feature model by support region detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3586–3593 (2012)

    Google Scholar 

  2. Keim, D.: Information visualization and visual data mining. IEEE Trans. Visual Comput. Graphics 8(1), 1–8 (2002)

    Article  MathSciNet  Google Scholar 

  3. Wehrend, S., Lewis, C.: A problem-oriented classification of visualization techniques. In: IEEE Visualization, pp. 139–143 (1990)

    Google Scholar 

  4. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67 (1997)

    Article  Google Scholar 

  5. Silva, C., Lotrič, U., Ribeiro, B., Dobnikar, A.: Distributed text classification with an ensemble kernel-based learning approach. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40, 287–297 (2010)

    Article  Google Scholar 

  6. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1998)

    MATH  Google Scholar 

  7. Huehn, J.C., Huellermeier, E.: FURIA: an algorithm for unordered fuzzy rule induction. In: Hühn, J., Hüllermeier, E. (eds.) Data Mining and Knowledge Discovery, vol. 19, 3rd edn, pp. 293–319. Springer, Heidelberg (2009)

    Google Scholar 

  8. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  9. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River (2003)

    MATH  Google Scholar 

  10. Salgado, C., Vieira, S.M., Mendonça, L.F., Finkelstein, S., Sousa, J.M.C.: Ensemble fuzzy models in personalized medicine: application to vasopressors administration. Eng. Appl. Artif. Intell. 49, 141–148 (2016)

    Article  Google Scholar 

  11. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006)

    Article  Google Scholar 

  12. Kuncheva, L.: Combining Pattern Classifiers - Methods and Algorithms. Wiley, Hoboken (2004)

    Book  MATH  Google Scholar 

  13. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Silva, C., Ribeiro, B. (eds.): Inductive Inference for Large Scale Text Classification, vol. 225. Springer, Heidelberg (2010)

    Google Scholar 

  15. Silva, C., Ribeiro, B.: Background on text classification. In: Inductive Inference for Large Scale Text Classification. Studies in Computational Intelligence, vol. 255. Springer (2010)

    Google Scholar 

  16. Gacquer D., Piechowiak S., Delmotte, F., Delcroix, V.: A genetic approach for training diverse classifier ensembles. In: International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU, pp. 798–805 (2008)

    Google Scholar 

  17. Rehm, F., Klawonn, F., Kruse, R.: Rule classification visualization of high-dimensional data. In: International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU, pp. 1944–1948 (2006)

    Google Scholar 

  18. Harle, C., Neill, D., Padman, R.: An information visualization approach to classification and assessment of diabetes risk in primary care. In: Li, J., Aleman, D., Sikora, R. (eds.) Proceedings of the 3rd INFORMS Workshop on Data Mining and Health Informatics (DM-HI 2008) (2008)

    Google Scholar 

  19. Talbot, J., Lee, B., Kapoor, A., Tan, D.: EnsembleMatrix: interactive visualization to support machine learning with multiple classifiers. In: ACM CHI (2009)

    Google Scholar 

  20. Wang, J., Yu, B., Gasser, L.: Classification Visualization with Shaded Similarity Matrix. University of Illinois at Urbana-Campaign, Technical report GSLIS (2002)

    Google Scholar 

  21. Velu, C.M., Kashwan, K.R.: Performance Analysis for visual data mining classification techniques of decision tree, ensemble and SOM. Int. J. Comput. Appl. 57(22) (2012)

    Google Scholar 

  22. Holten, D.: Hierarchical edge bundles: visualization of adjacencyrelations in hierarchical data. IEEE Trans. Visualizationand Comput. Graphics 12(5), 741–748 (2006)

    Article  Google Scholar 

  23. Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: scope and challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 76–90. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Keim, D., Qu, H., Ma, K.-L.: Big-data visualization. IEEE Comput. Graphics Appl. 33(4), 20–21 (2013)

    Article  Google Scholar 

  25. van Rijsbergen, C.: Information Retrieval, Butterworths (ed.) (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Silva, C., Ribeiro, B. (2016). Visualization of Individual Ensemble Classifier Contributions. In: Carvalho, J., Lesot, MJ., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, vol 611. Springer, Cham. https://doi.org/10.1007/978-3-319-40581-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40581-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40580-3

  • Online ISBN: 978-3-319-40581-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics