Abstract
Quantified Self or self-tracking is a growing movement where people are tracking data about themselves. Tracking the provenance of Quantified Self data is hard because usually many different devices, apps, and services are involved. Nevertheless receiving insights how the data has been acquired, how it has been processed, and who has stored and accessed it is crucial for people. We present concepts for tracking provenance in typical Quantified Self workflows. We use a provenance model based on PROV and show its feasibility with an example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, M.D., Chapman, A., Blaustein, B., Seligman, L.: Capturing provenance in the wild. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS, vol. 6378, pp. 98–101. Springer, Heidelberg (2010)
Bachmann, A., Bergmeyer, H., Schreiber, A.: Evaluation of aspect-oriented frameworks in python for extending a project with provenance documentation features. Python Pap. 6(3), 3 (2011)
Hoy, M.B.: Personal activity trackers and the quantified self. Med. Ref. Serv. Q 35(1), 94–100 (2016)
Huynh, T.D., Moreau, L.: ProvStore: a public provenance repository. In: Ludaescher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp. 275–277. Springer, Heidelberg (2015)
Janisch, B.: Developing an abstract Quantified Self Provenance model. Master project, University of Applied Sciences Bonn-Rhein-Sieg (2015). http://elib.dlr.de/100752/
McPhillips, T., et al.: Yesworkflow: a user-oriented, language-independent tool for recovering workflow information from scripts. Int. J. Digit. Curation 10(1), 298–313 (2015)
Murta, L., Braganholo, V., Chirigati, F., Koop, D., Freire, J.: noWorkflow: capturing and analyzing provenance of scripts. In: Ludaescher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp. 71–83. Springer, Heidelberg (2015)
Picard, R., Wolf, G.: Sensor informatics and quantified self. IEEE J. Biomed. Health Inf. 19(5), 1531 (2015)
Schreiber, A.: A provenance model for quantified self data. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2016, Part I. LNCS, vol. 9737. Springer, Switzerland (2016)
Stamatogiannakis, M., Groth, P., Bos, H.: Looking inside the black-box: capturing data provenance using dynamic instrumentation. In: Ludaescher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp. 155–167. Springer, Heidelberg (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Schreiber, A., Seider, D. (2016). Towards Provenance Capturing of Quantified Self Data. In: Mattoso, M., Glavic, B. (eds) Provenance and Annotation of Data and Processes. IPAW 2016. Lecture Notes in Computer Science(), vol 9672. Springer, Cham. https://doi.org/10.1007/978-3-319-40593-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-40593-3_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40592-6
Online ISBN: 978-3-319-40593-3
eBook Packages: Computer ScienceComputer Science (R0)