Skip to main content

Towards Provenance Capturing of Quantified Self Data

  • Conference paper
  • First Online:
Provenance and Annotation of Data and Processes (IPAW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9672))

Included in the following conference series:

Abstract

Quantified Self or self-tracking is a growing movement where people are tracking data about themselves. Tracking the provenance of Quantified Self data is hard because usually many different devices, apps, and services are involved. Nevertheless receiving insights how the data has been acquired, how it has been processed, and who has stored and accessed it is crucial for people. We present concepts for tracking provenance in typical Quantified Self workflows. We use a provenance model based on PROV and show its feasibility with an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://play.google.com/store/apps/details?id=de.medando.weightcompanion.

  2. 2.

    http://lucmoreau.github.io/ProvToolbox/.

  3. 3.

    https://github.com/trungdong/prov.

References

  1. Allen, M.D., Chapman, A., Blaustein, B., Seligman, L.: Capturing provenance in the wild. In: McGuinness, D.L., Michaelis, J.R., Moreau, L. (eds.) IPAW 2010. LNCS, vol. 6378, pp. 98–101. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Bachmann, A., Bergmeyer, H., Schreiber, A.: Evaluation of aspect-oriented frameworks in python for extending a project with provenance documentation features. Python Pap. 6(3), 3 (2011)

    Google Scholar 

  3. Hoy, M.B.: Personal activity trackers and the quantified self. Med. Ref. Serv. Q 35(1), 94–100 (2016)

    Article  Google Scholar 

  4. Huynh, T.D., Moreau, L.: ProvStore: a public provenance repository. In: Ludaescher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp. 275–277. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  5. Janisch, B.: Developing an abstract Quantified Self Provenance model. Master project, University of Applied Sciences Bonn-Rhein-Sieg (2015). http://elib.dlr.de/100752/

  6. McPhillips, T., et al.: Yesworkflow: a user-oriented, language-independent tool for recovering workflow information from scripts. Int. J. Digit. Curation 10(1), 298–313 (2015)

    Article  Google Scholar 

  7. Murta, L., Braganholo, V., Chirigati, F., Koop, D., Freire, J.: noWorkflow: capturing and analyzing provenance of scripts. In: Ludaescher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp. 71–83. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  8. Picard, R., Wolf, G.: Sensor informatics and quantified self. IEEE J. Biomed. Health Inf. 19(5), 1531 (2015)

    Article  Google Scholar 

  9. Schreiber, A.: A provenance model for quantified self data. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2016, Part I. LNCS, vol. 9737. Springer, Switzerland (2016)

    Google Scholar 

  10. Stamatogiannakis, M., Groth, P., Bos, H.: Looking inside the black-box: capturing data provenance using dynamic instrumentation. In: Ludaescher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp. 155–167. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schreiber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schreiber, A., Seider, D. (2016). Towards Provenance Capturing of Quantified Self Data. In: Mattoso, M., Glavic, B. (eds) Provenance and Annotation of Data and Processes. IPAW 2016. Lecture Notes in Computer Science(), vol 9672. Springer, Cham. https://doi.org/10.1007/978-3-319-40593-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40593-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40592-6

  • Online ISBN: 978-3-319-40593-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics