Skip to main content

Sets of Priors Reflecting Prior-Data Conflict and Agreement

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2016)

Abstract

In Bayesian statistics, the choice of prior distribution is often debatable, especially if prior knowledge is limited or data are scarce. In imprecise probability, sets of priors are used to accurately model and reflect prior knowledge. This has the advantage that prior-data conflict sensitivity can be modelled: Ranges of posterior inferences should be larger when prior and data are in conflict. We propose a new method for generating prior sets which, in addition to prior-data conflict sensitivity, allows to reflect strong prior-data agreement by decreased posterior imprecision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We denote prior parameter values by upper index \({}^{(0)}\) and posterior parameter values, after n observations, by upper index\({}^{(n)}\).

  2. 2.

    We treat s as a a real-value in [0, n] for convenience of our discussions; this does not affect the conclusions.

References

  1. Augustin, T., Coolen, F., de Cooman, G., Troffaes, M.: Introduction to Imprecise Probabilities. Wiley, Chichester (2014)

    Book  MATH  Google Scholar 

  2. Berger, J., et al.: An overview of robust Bayesian analysis. TEST 3, 5–124 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bickis, M.: The geometry of imprecise inference. In: Augustin, T., Doria, S., Miranda, E., Quaeghebeur, E. (eds.) ISIPTA 2015: Proceedings of the Ninth International Symposium on Imprecise Probability: Theories and Applications, pp. 47–56. SIPTA (2015). http://www.sipta.org/isipta15/data/paper/31.pdf

  4. Evans, M., Moshonov, H.: Checking for prior-data conflict. Bayesian Analysis 1, 893–914 (2006). http://projecteuclid.org/euclid.ba/1340370946

    Article  MathSciNet  MATH  Google Scholar 

  5. Quaeghebeur, E., de Cooman, G.: Imprecise probability models for inference in exponential families. In: Cozman, F., Nau, R., Seidenfeld, T. (eds.) ISIPTA 2005, Proceedings of the Fourth International Symposium on Imprecise Probabilities and Their Applications, pp. 287–296. SIPTA, Manno (2005)

    Google Scholar 

  6. Robert, C.P.: The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation. Springer, New York (2007)

    MATH  Google Scholar 

  7. Troffaes, M., Walter, G., Kelly, D.: A robust Bayesian approach to modelling epistemic uncertainty in common-cause failure models. Reliab. Eng. Syst. Saf. 125, 13–21 (2014)

    Article  Google Scholar 

  8. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

    Book  MATH  Google Scholar 

  9. Walley, P.: Inferences from multinomial data: Learning about a bag of marbles. J. R. Stat. Soc. Ser. B 58(1), 3–34 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Walter, G.: Generalized Bayesian inference under prior-data conflict. Ph.D. thesis, Ludwig-Maximilians-Universität München (2013). http://nbn-resolving.de/urn:nbn:de:bvb:19-170598

  11. Walter, G., Augustin, T.: Imprecision and prior-data conflict in generalized Bayesian inference. J. Stat. Theory Pract. 3, 255–271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Walter, G., Graham, A., Coolen, F.P.A.: Robust Bayesian estimation of system reliability for scarce and surprising data. In: Podofillini, L., Sudret, B., Stojadinović, B., Zio, E., Kröger, W. (eds.) Safety and Reliability of Complex Engineered Systems: ESREL 2015, pp. 1991–1998. CRC Press, Boca Raton (2015)

    Chapter  Google Scholar 

Download references

Acknowledgements

Gero Walter was supported by the Dinalog project “Coordinated Advanced Maintenance and Logistics Planning for the Process Industries” (CAMPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gero Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Walter, G., Coolen, F.P.A. (2016). Sets of Priors Reflecting Prior-Data Conflict and Agreement. In: Carvalho, J., Lesot, MJ., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, vol 610. Springer, Cham. https://doi.org/10.1007/978-3-319-40596-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40596-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40595-7

  • Online ISBN: 978-3-319-40596-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics