Skip to main content

Gaussian Noise Reduction Using Fuzzy Morphological Amoebas

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2016)

Abstract

Many image processing and computer vision applications require a preprocessing of the image to remove or reduce noise. Gaussian noise is a challenging type of noise whose removal has led to the proposal of several noise filters. In this paper we present a novel version of the morphological filters based on amoebas with the aim to incorporate fuzzy logic into them to achieve a better treatment of the uncertainty. The experimental results show that the proposed algorithm outperforms the classical amoeba-based filters both from the visual point of view and the quantitative performance values for images corrupted with Gaussian noise with standard deviation from 10 to 30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This image database can be downloaded from http://sipi.usc.edu/database/misc.tar.gz.

References

  1. Angulo, J.: Morphological bilateral filtering. SIAM J. Imaging Sci. 6(3), 1790–1822 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Berlin, Heidelberg (2008)

    MATH  Google Scholar 

  3. Bloch, I., Maître, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recogn. 28, 1341–1387 (1995)

    Article  MathSciNet  Google Scholar 

  4. Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bustince, H., Pagola, M., Barrenechea, E.: Construction of fuzzy indices from fuzzy DI-subsethood measures: application to the global comparison of images. Inf. Sci. 177, 906–929 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chatterjee, P., Milanfar, P.: Clustering-based denoising with locally learned dictionaries. IEEE Trans. Image Process. 18(7), 1438–1451 (2009)

    Article  MathSciNet  Google Scholar 

  7. De Baets, B.: Fuzzy morphology: a logical approach. In: Ayyub, B.M., Gupta, M.M. (eds.) Uncertainty Analysis in Engineering and Science: Fuzzy Logic. Statistics, and Neural Network Approach, pp. 53–68. Kluwer Academic Publishers, Norwell (1997)

    Google Scholar 

  8. González-Hidalgo, M., Massanet, S.: Closing and opening based on discrete t-norms. Applications to natural image analysis. In: Galichet, S., Montero, J., Mauris, G. (eds.) Proceedings of EUSFLAT-LFA-2011 Advances in Intelligent Systems Research, vol. 17, pp. 358–365. Atlantis Press (2011)

    Google Scholar 

  9. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: A fuzzy filter for high-density salt and pepper noise removal. In: Bielza, C., et al. (eds.) Advances in Artificial Intelligence. LNCS, vol. 8109, pp. 70–79. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  10. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: High-density impulse noise removal using fuzzy mathematical morphology. In: Pasi, G., Montero, J., Ciucci, D. (eds.) Proceedings of the 8th conference of the European Society of Fuzzy Logic and Technology Conference (EUSFLAT 2013), pp. 728–735. Atlantis Press, Milano, Italy (2013)

    Google Scholar 

  11. González-Hidalgo, M., Mir-Torres, A., Ruiz-Aguilera, D., Torrens, J.: Applications of morphological operators based on uninorms. In: ESTYLF 2008, pp. 203–210. European Centre for Soft Computing, Asturias (2008)

    Google Scholar 

  12. González-Hidalgo, M., Mir-Torres, A., Ruiz-Aguilera, D., Torrens, J.: Image analysis applications of morphological operators based on uninorms. In: Proceedings of the IFSA-EUSFLAT 2009 Conference, Lisbon, Portugal, pp. 630–635 (2009)

    Google Scholar 

  13. Kerre, E., Nachtegael, M.: Fuzzy Techniques in Image Processing. Studies in Fuzziness and Soft Computing, vol. 52. Springer, New York (2000)

    Book  MATH  Google Scholar 

  14. Klement, E., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, London (2000)

    Book  MATH  Google Scholar 

  15. Kuwahara, M., Hachimura, K., Eiho, S., Kinoshita, M.: Processing of ri-angiocardiographic images. In: Preston Jr., J., Onoe, M. (eds.) Digital Processing of Biomedical Images, pp. 187–202. Springer, New York (1976)

    Chapter  Google Scholar 

  16. Lerallut, R., Decencire, E., Meyer, F.: Image filtering using morphological amoebas. Image Vis. Comput. 25(4), 395–404 (2007)

    Article  Google Scholar 

  17. Mendiola-Santibañez, J.D., Terol-Villalobos, I.R.: Filtering of mixed gaussian and impulsive noise using morphological contrast detectors. Image Process. IET 8(3), 131–141 (2014)

    Article  Google Scholar 

  18. Nachtegael, M., Kerre, E.: Classical and fuzzy approaches towards mathematical morphology. In: Kerre, E.E., Nachtegael, M. (eds.) Fuzzy techniques in image processing, Chapter 1. Studies in Fuzziness and Soft Computing, vol. 52, pp. 3–57. Physica-Verlag, New York (2000)

    Chapter  Google Scholar 

  19. Serra, J.: Image Analysis and Mathematical Morphology, vols. 1, 2. Academic Press, London (1982, 1988)

    Google Scholar 

  20. Shao, L., Yan, R., Li, X., Liu, Y.: From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms. IEEE Trans. Cybern. 44(7), 1001–1013 (2014)

    Article  Google Scholar 

  21. Soille, P.: Morphological Image Analysis. Springer, Berlin, Heidelberg (1999)

    Book  MATH  Google Scholar 

  22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  23. Yan, R., Shao, L., Liu, Y.: Nonlocal hierarchical dictionary learning using wavelets for image denoising. IEEE Trans. Image Process. 22(12), 4689–4698 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper has been partially supported by the Spanish grant TIN2013-42795-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastia Massanet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D. (2016). Gaussian Noise Reduction Using Fuzzy Morphological Amoebas. In: Carvalho, J., Lesot, MJ., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016. Communications in Computer and Information Science, vol 610. Springer, Cham. https://doi.org/10.1007/978-3-319-40596-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40596-4_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40595-7

  • Online ISBN: 978-3-319-40596-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics