Abstract
This paper presents a simulation of a tsunami impact upon an urban coastline. Emphasis was given to the conservation of momentum, as its distribution in space and time is the main factor of the wave’s effects on the coastline. Due to this, a hybrid simulation method was adopted, based on the Smoothed Particle Hydrodynamics (SPH) method, enriched with geometric constraints and rigid body interactions. The implementation is the result of cooperation between the Bullet physics engine and our custom SPH engine, which successively process the dynamic state of the fluid at every timestep. Furthermore, in order to achieve better performance a custom data structure (LP grid) was developed for the optimization of locality in data storage and minimization of access time. Simulation data is exported to VTK files, allowing interactive processing and visualization. Experimental results demonstrate the benefits of impulse recording at potential hazard estimation and evaluation of defense strategies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. (TOG) 31(4), 62:1–62:8 (2012)
Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2007)
Dalrymple, R.A., Rogers, B.D.: Numerical modeling of water waves with the SPH method. Coast. Eng. 53(2), 141–147 (2006)
Danielsen, F., Sørensen, M.K., Olwig, M.F., Selvam, V., Parish, F., Burgess, N.D., Hiraishi, T., Karunagaran, V.M., Rasmussen, M.S., Hansen, L.B., Quarto, A.: The Asian tsunami: a protective role for coastal vegetation. Science(Washington) 310(5748), 643 (2005)
Debroux, F., Prakash, M., Cleary, P.: Three-dimensional modelling of a tsunami interacting with real topographical coastline using smoothed particle hydrodynamics. In: Proceedings of the 14th Australasian Fluid Mechanics Conference, Adelaide, Australia, pp. 311–314 (2001)
Desbrun, M., Cani, M.P.: Smoothed particles: a new paradigm for animating highly deformable bodies. In: Boulic, R., Hégron, G. (eds.) Computer Animation and Simulation 1996. Eurographics, pp. 61–76. Springer, Wien (1996)
Domínguez, J.M., Crespo, A.J., Gómez-Gesteira, M., Marongiu, J.C.: Neighbour lists in smoothed particle hydrodynamics. Int. J. Numer. Meth. Fluids 67(12), 2026–2042 (2011)
Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R Astron. Soc. 181(3), 375–389 (1977)
Gómez-Gesteira, M., Dalrymple, R.A.: Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. J. Waterw. Port Coast. Ocean Eng. 130(2), 63–69 (2004)
Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner, M.: Implicit incompressible SPH. IEEE Trans. Vis. Comput. Graph. 20(3), 426–435 (2014)
Ioualalen, M., Asavanant, J., Kaewbanjak, N., Grilli, S.T., Kirby, J.T., Watts, P.: Modeling the 26 December 2004 Indian Ocean tsunami: case study of impact in Thailand. J. Geophys. Res. Oceans 112(C7) (2007)
Kakinuma, T.: 3D numerical simulation of tsunami runup onto a complex beach. In: Advanced Numerical Models for Simulating Tsunami Waves and Runup, pp. 255–260 (2008)
Kathiresan, K., Rajendran, N.: Coastal mangrove forests mitigated tsunami. Estuar. Coast. Shelf Sci. 65(3), 601–606 (2005)
Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)
Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(4), 104:1–104:12 (2013)
Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159 (2003)
Samaras, A.G., Karambas, T.V., Archetti, R.: Simulation of tsunami generation, propagation and coastal inundation in the Eastern Mediterranean. Ocean Sci. 11(4), 643–655 (2015)
Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. ACM Trans. Graph. (TOG) 28(3), 40:1–40:6 (2009)
St-Germain, P., Nistor, I., Townsend, R., Shibayama, T.: Smoothed-particle hydrodynamics numerical modeling of structures impacted by tsunami bores. J. Waterw. Port Coast. Ocean Eng. 140(1), 66–81 (2014)
Wang, X., Liu, P.L.F.: Numerical simulations of the 2004 Indian Ocean tsunamis-coastal effects. J. Earthq. Tsunami 1(3), 273–297 (2007)
Yanagisawa, H., Koshimura, S., Goto, K., Miyagi, T., Imamura, F., Ruangrassamee, A., Tanavud, C.: The reduction effects of mangrove forest on a tsunami based on field surveys at Pakarang Cape, Thailand and numerical analysis. Estuar. Coast. Shelf Sci. 81(1), 27–37 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Spathis-Papadiotis, A., Moustakas, K. (2016). Simulation of Tsunami Impact upon Coastline. In: De Paolis, L., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2016. Lecture Notes in Computer Science(), vol 9768. Springer, Cham. https://doi.org/10.1007/978-3-319-40621-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-40621-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40620-6
Online ISBN: 978-3-319-40621-3
eBook Packages: Computer ScienceComputer Science (R0)