Skip to main content

Transparency of a Bilateral Tele-Operation Scheme of a Mobile Manipulator Robot

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2016)

Abstract

This work presents the design of a bilateral tele-operation system for a mobile manipulator robot, allowing a human operator to perform complex tasks in remote environments. In the tele-operation system it is proposed that the human operator is immersed in an augmented reality environment to have greater transparency of the remote site. The transparency of a tele-operation system indicates a measure of how the human feels the remote system. In the local site an environment of augmented reality developed in Unity3D is implemented, which through input devices recreates the sensations that the human would feel if he were in the remote site, for which is considered the senses of sight, touch and hearing. These senses help the human operator to “transmit” their ability and experience to the robot to perform a task. Finally, experimental results are reported to verify the performance of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9(5), 624–637 (1993). 2015 24th IEEE International Symposium on Communication (RO-MAN), pp. 431–437. IEEE

    Article  MathSciNet  Google Scholar 

  2. Carlson, J., Murphy, R.R.: How UGVs physically fail in the field. IEEE Trans. Rob. 21(3), 423–437 (2005)

    Article  Google Scholar 

  3. Brunet, P., Vinacua, A.: Sistemas Gráficos Interactivos. Universidad Politécnica de Cataluña. Barcelona, España, Mayo de 2006. http://www.lsi.upc.edu/~pere/SGI/guions/ArquitecturaRV.pdf

  4. Desbats, P., Geffard, F., Piolain, G., Coudray, A.: Force-feedback teleoperation of an industrial robot in a nuclear spent fuel reprocessing plant. Ind. Robot Int. J. 33(3), 178–186 (2006)

    Article  Google Scholar 

  5. Mukherjee, J.K.: Fast visualisation technique for view constrained tele-operation in nuclear industry. In: 2014 International Conference on Information Science and Applications (ICISA), pp. 1–4. IEEE (2014)

    Google Scholar 

  6. Sanchez, J.G., Patrao, B., Almeida, L., Perez, J., Menezes, P., Dias, J., Sanz, P.: Design and evaluation of a natural interface for remote operation of underwater robots. IEEE Comput. Graphics Appl. 1, 1 (2015)

    Article  Google Scholar 

  7. Christ, R.D., Wernli Sr., R.L.: The ROV manual: a user guide for remotely operated vehicles. Butterworth-Heinemann (2013)

    Google Scholar 

  8. Al Mashagbeh, M., Khamesee, M.B.: Unilateral teleoperated master-slave system for medical applications. IFAC-PapersOnLine 48(3), 784–787 (2015)

    Article  Google Scholar 

  9. Livatino, S., De Paolis, L.T., D’Agostino, M., Zocco, A., Agrimi, A., De Santis, A., Lapresa, M.: Stereoscopic visualization and 3-D technologies in medical endoscopic teleoperation. IEEE Trans. Ind. Electronics 62(1), 525–535 (2015)

    Article  Google Scholar 

  10. Andaluz, V.H., Salinas, L., Roberti, F., Toibero, J.M., Carelli, R.: Switching control signal for bilateral tele-operation of a mobile manipulator. In: 2011 9th IEEE International Conference on Control and Automation (ICCA), pp. 778–783. IEEE (2011)

    Google Scholar 

  11. Freund, E., Rossmann, J.: Proyetive virtual reality: Bringing the gap between virtual reality and robotic. IEEE Trans. Robot. Autom. 15(3), 411–422 (1999)

    Article  Google Scholar 

  12. Najmaei, N., Asadian, A., Kermani, M., Patel, R.: Design and Performance Evaluation of a Prototype MRF-based Haptic Interface for Medical Applications (2015)

    Google Scholar 

  13. Farkhatdinov, I., Ryu, J.H.: Switching of control signals in teleoperation systems: Formalization and application. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2008, AIM 2008, pp. 353–358. IEEE (2008)

    Google Scholar 

  14. Pacchierotti, C., Tirmizi, A., Prattichizzo, D.: Improving transparency in teleoperation by means of cutaneous tactile force feedback. ACM Trans. Appl. Percept. (TAP) 11(1), 4 (2014)

    Google Scholar 

  15. Song, G., Guo, S., Wang, Q.: A Tele-operation system based on haptic feedback. In: 2006 IEEE International Conference on Information Acquisition, pp. 1127–1131. IEEE (2006)

    Google Scholar 

  16. Willaert, B., Reynaerts, D., Van Brussel, H., Vander Poorten, E.B.: Bilateral teleoperation: quantifying the requirements for and restrictions of ideal transparency. IEEE Trans. Control Syst. Technol. 22(1), 387–395 (2014)

    Article  Google Scholar 

  17. Tanzini, M., Tripicchio, P., Ruffaldi, E., Galgani, G., Lutzemberger, G., Avizzano, C.A.: A novel human-machine interface for working machines operation. In: 2013 IEEE RO-MAN, pp. 744–750. IEEE (2013)

    Google Scholar 

  18. Okamura, A.M.: Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Robot Int. J. 31(6), 499–508 (2004)

    Article  Google Scholar 

  19. Khatib, O.: Mobile manipulation: The robotic assistant. Robot. Auton. Syst. 26(2/3), 175–183 (1999)

    Article  Google Scholar 

  20. Das, Y., Russell, K., Kircanski, N., Goldenberg, A.: An articulated robotic scanner for mine detection-a novel approach to vehicle mounted systems. In: Proceedings of the SPIE Conference, USA, pp. 5–9 (1999)

    Google Scholar 

  21. Andaluz, V., Roberti, F., Toibero, J., Carelli, R.: Adaptive unified motion control of mobile manipulators. Control Eng. Pract. 20(12), 1337–1352 (2012)

    Article  Google Scholar 

  22. Martin, S., Hillier, N.: Characterization of the novint falcon haptic device for application as a robot manipulator. In: Australasian Conference on Robotics and Automation (2009)

    Google Scholar 

  23. Andaluz, V., Salinas, L., Roberti, F., Toibero, J., Carelli, R.: Switching control signal for bilateral tele-operation of a mobile manipulator. In: 2011 9th IEEE International Conference on Control and Automation (ICCA), Santiago, Chile, pp. 778–783, 19–21 December 2011

    Google Scholar 

  24. Slawiñski, E., Mut, V.: Transparency in time for teleoperation systems. In: 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 200–205, 19–23 May 2008

    Google Scholar 

  25. Oculus Ready PCs: Full Rift Experience System Recommendations, Abril de 2016. https://www.oculus.com/en-us/oculus-ready-pcs

Download references

Acknowledgment

The authors would like to thanks to the Consorcio Ecuatoriano para el Desarrollo de Internet Avanzado -CEDIA-, Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato and the Escuela Superior Politécnica del Chimborazo for financing the project Tele-operación bilateral cooperativo de múltiples manipuladores móvilesCEPRAIX-2015-05, for the support to develop this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Hugo Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Andaluz, V.H. et al. (2016). Transparency of a Bilateral Tele-Operation Scheme of a Mobile Manipulator Robot. In: De Paolis, L., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2016. Lecture Notes in Computer Science(), vol 9768. Springer, Cham. https://doi.org/10.1007/978-3-319-40621-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40621-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40620-6

  • Online ISBN: 978-3-319-40621-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics