Skip to main content

Immersive Virtual Reality-Based Simulation to Support the Design of Natural Human-Robot Interfaces for Service Robotic Applications

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2016)

Abstract

The increasing popularity of robotics and related applications in modern society makes interacting and communicating with robots of crucial importance. In service robotics, where robots operate to assist human beings in their daily life, natural interaction paradigms capable to foster an ever more intuitive and effective collaboration between involved actors are needed. The aim of this paper is to discuss activities that have been carried out to create a 3D immersive simulation environment able to ease the design and evaluation of natural human-robot interfaces in generic usage contexts. The proposed framework has been exploited to tackle a specific use case represented by a robotics-enabled office scenario and to develop two user interfaces based on augmented reality, speech recognition as well as gaze and body tracking technologies. Then, a user study has been performed to study user experience in the execution of semi-autonomous tasks in the considered scenario though both objective and subjective observations. Besides confirming the validity of the devised approach, the study provided precious indications regarding possible evolutions of both the simulation environment and the service robotic scenario considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://jol.telecomitalia.com/jolcrab/.

  2. 2.

    http://gazebosim.org.

  3. 3.

    https://www.cyberbotics.com/overview.

  4. 4.

    https://www.robologix.com/.

  5. 5.

    https://www.blender.org/.

  6. 6.

    https://unity3d.com/.

  7. 7.

    https://www.oculus.com/en-us/dk2/.

  8. 8.

    https://www.xbox.com/kinect/.

  9. 9.

    https://www.playstation.com/en-us/explore/accessories/dualshock-3-ps3/.

  10. 10.

    https://www.microsoft.com/en-us/download/details.aspx?id=44561.

  11. 11.

    http://zigfu.com/en/zdk/overview/.

  12. 12.

    http://www.sketchup.com.

  13. 13.

    https://www.blender.org.

  14. 14.

    http://gazebosim.org/.

  15. 15.

    http://www.ros.org/.

  16. 16.

    https://www.dropbox.com/s/oc8nhe970iqp6v3/video.mp4?dl=0.

  17. 17.

    https://www.google.com/get/cardboard/.

  18. 18.

    http://www.google.it/glass/start/.

  19. 19.

    http://www.samsung.com/us/mobile/wearable-tech.

  20. 20.

    https://www.leapmotion.com/.

  21. 21.

    http://www.apple.com/ios/siri/.

  22. 22.

    http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana.

  23. 23.

    https://www.dropbox.com/s/q2s82c0zezoxkyv/questionnaires.zip?dl=0.

References

  1. International Federation of Robotics. Service robots. In: World Robotics 2015, pp. 12–14. IFR (2015). http://www.ifr.org/service-robots/

  2. Acquisti, A., Feltovich, P., Hoffman, R., Jeffers, R., Prescott, D., Suri, N., Uszok, A., Van Hoof, R., Bradshaw, J.M., Sierhuis, M.: Adjustable autonomy and human-agent teamwork in practice: an interim report on space applications. In: Hexmoor, H., Castelfranchi, C., Falcone, R. (eds.) Agent Autonomy. Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 7, pp. 243–280. Springer, New York (2003)

    Chapter  Google Scholar 

  3. LaViola, J.J., Jenkins, O.C.: Natural user interfaces for adjustable autonomy in robot control. IEEE Comput. Graph. Appl. 35(3), 20–21 (2015)

    Article  Google Scholar 

  4. Goodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Found. Trends Hum. Comput. Interact. 1(3), 203–275 (2007)

    Article  MATH  Google Scholar 

  5. Stiefelhagen, R., Ekenel, H.K., Fügen, C., Gieselmann, P., Holzapfel, H., Kraft, F., Nickel, K., Voit, M., Waibel, A.: Enabling multimodal human-robot interaction for the karlsruhe humanoid robot. IEEE Trans. Robot. 23(5), 840–851 (2007)

    Article  Google Scholar 

  6. Adkar, P.: Unimodal and multimodal human computer interaction: a modern overview. Int. J. Comput. Sci. Inf. Eng. Technol. 2(3), 1–8 (2013)

    Google Scholar 

  7. Oviatt, S.: Multimodal interfaces. Hum. Comput. Interact. Handb. Fundam. Evolving Technol. Emerg. Appl. 14, 286–304 (2003)

    Google Scholar 

  8. Kollar, T., Vedantham, A., Sobel, C., Chang, C., Perera, V., Veloso, M.: A multi-modal approach for natural human-robot interaction. In: Ge, S.S., Khatib, O., Cabibihan, J.-J., Simmons, R., Williams, M.-A. (eds.) ICSR 2012. LNCS, vol. 7621, pp. 458–467. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Crandall, J.W., Goodrich, M.A., Olsen Jr., D.R., Nielsen, C.W.: Validating human-robot interaction schemes in multitasking environments. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 35(4), 438–449 (2005)

    Google Scholar 

  10. Sheridan, T.B.: Humans and Automation: System Design and Research Issues. John Wiley and Sons Inc., New York (2002)

    Google Scholar 

  11. Endsley, M.R.: Designing for Situation Awareness: An Approach to User-Centered Design. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  12. Johnston, J.H., Fiore, S.M., Paris, C., Smith, C.A.: Application of Cognitive Load Theory to Developing a Measure of Team Decision Efficiency. Technical report, DTIC Document (2002)

    Google Scholar 

  13. Klein, G., Feltovich, P.J., Bradshaw, J.M., Woods, D.D.: Common ground and coordination in joint activity. Organ. Simul. 53, 139–184 (2005)

    Article  Google Scholar 

  14. Nechvatal, J.: Immersive Ideals/Critical Distances, pp. 48–60. LAP Lambert Academic Publishing, Saarbrücken (2009)

    Google Scholar 

  15. Bolt, R.A.: “Put-that-there": Voice and Gesture at the Graphics Interface, vol. 14(3), pp. 262–270. ACM (1980)

    Google Scholar 

  16. Skubic, M., Perzanowski, D., Blisard, S., Schultz, A., Adams, W., Bugajska, M., Brock, D.: Spatial language for human-robot dialogs. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 34(2), 154–167 (2004)

    Article  Google Scholar 

  17. Fong, T., Thorpe, C., Baur, C.: Multi-robot remote driving with collaborative control. IEEE Trans. Ind. Electron. 50(4), 699–704 (2003)

    Article  Google Scholar 

  18. Green, S.A., Chen, X., Billinghurst, M., Chase, J.G.: Collaborating with a mobile robot: an augmented reality multimodal interface. In: 17th World Congress of the International Federation of Automatic Control, pp. 15595–15600 (2008)

    Google Scholar 

  19. Maida, J.C., Bowen, C.K., Pace, J.W.: Enhanced Lighting Techniques and Augmented Reality to Improve Human Task Performance. Technical report, NASA (2005)

    Google Scholar 

  20. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: 11th International Conference on Advanced Robotics, pp. 317–323 (2003)

    Google Scholar 

  21. Severinson-Eklundh, K., Green, A., Hüttenrauch, H.: Social and collaborative aspects of interaction with a service robot. Robot. Auton. Syst. 42(3), 223–234 (2003)

    Article  MATH  Google Scholar 

  22. Savage-Carmona, J., Billinghurst, M., Holden, A.: The virbot: a virtual reality robot driven with multimodal commands. Expert Syst. Appl. 15(3), 413–419 (1998)

    Article  Google Scholar 

  23. Echeverria, G., Lemaignan, S., Degroote, A., Lacroix, S., Karg, M., Koch, P., Lesire, C., Stinckwich, S.: Simulating complex robotic scenarios with MORSE. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 197–208. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Giuliano, L., Ng, K., Efrain, M., Lupetti, M.L., Germak, C.: Virgil, robot for museum experience: study on the opportunity given by robot capability to integrate the actual museum visit. In: 7th International Conference on Intelligent Technologies for Interactive Entertainment, pp. 222–223 (2015)

    Google Scholar 

  25. Lewis, J.R.: IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int. J. Hum. Comput. Interact. 7(1), 57–78 (1995)

    Article  Google Scholar 

  26. Hone, K.S., Graham, R.: Towards a tool for the subjective assessment of speech system interfaces. Nat. Lang. Eng. 6(3–4), 287–303 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Bazzano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bazzano, F. et al. (2016). Immersive Virtual Reality-Based Simulation to Support the Design of Natural Human-Robot Interfaces for Service Robotic Applications. In: De Paolis, L., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2016. Lecture Notes in Computer Science(), vol 9768. Springer, Cham. https://doi.org/10.1007/978-3-319-40621-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40621-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40620-6

  • Online ISBN: 978-3-319-40621-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics