Skip to main content

A System to Exploit Thermographic Data Using Projected Augmented Reality

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9768))

Abstract

We present a prototype system composed practically of an IR camera and a video projector with the purpose to create a device that projects the thermal map directly on the observed surface. The novelty of this work lies on the building of a portable tool, the development of software and the proposing of a calibration procedure to be used in industrial and construction sites from thermal inspectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amano, T.: Projection center calibration for a co-located projector camera system. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 443–448 (2014)

    Google Scholar 

  2. Avdelidis, N.P., Moropoulou, A.: Emissivity considerations in building thermography. Energy Build. 35(7), 663–667 (2003)

    Article  Google Scholar 

  3. Balaras, C.A., Argiriou, A.A.: Infrared thermography for building diagnostics. Energy Build. 34(2), 171–183 (2002)

    Article  Google Scholar 

  4. Barreira, E., de Freitas, V.P.: Evaluation of building materials using infrared thermography. Constr. Build. Mater. 21(1), 218–224 (2007)

    Article  Google Scholar 

  5. Berz, R., et al.: The medical use of infrared-thermography history and recent applications (2007)

    Google Scholar 

  6. Carlomagno, G.M., Di Maio, R., Fedi, M., Meola, C.: Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys. J. Geophys. Eng. 8(3), S93 (2011)

    Article  Google Scholar 

  7. Casana, J., Kantner, J., Wiewel, A., Cothren, J.: Archaeological aerial thermography: A case study at the Chaco-era Blue J community, New Mexico. J. Archaeol. Sci. 45, 207–219 (2014)

    Article  Google Scholar 

  8. Di Donato, M., Fiorentino, M., Uva, A.E., Gattullo, M., Monno, G.: Text legibility for projected augmented reality on industrial workbenches. Comput. Ind. 70, 70–78 (2015)

    Article  Google Scholar 

  9. Fan, C., Sun, F., Yang, L.: An algorithm study on the identification of a pipeline’s irregular inner boundary based on thermographic temperature measurement. Measur. Sci. Technol. 18(7), 2170 (2007)

    Article  Google Scholar 

  10. Fan, C., Sun, F., Yang, L.: Investigation on nondestructive evaluation of pipelines using infrared thermography. In: The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005. IRMMW-THz 2005, pp. 339–340 (2005)

    Google Scholar 

  11. Fiorentino, M., Debernardis, S., Uva, A.E., Monno, G.: Augmented reality text style readability with see-through head-mounted displays in industrial context. Presence: Teleoperators Virtual Environ. 22(2), 171–190 (2013)

    Article  Google Scholar 

  12. Fiorentino, M., Uva, A.E., Gattullo, M., Debernardis, S., Monno, G.: Augmented reality on large screen for interactive maintenance instructions. Comput. Ind. 65(2), 270–278 (2014)

    Article  Google Scholar 

  13. Gaussorgues, G., Chomet, S.: Infrared Thermography. Springer, Netherlands (2012)

    Google Scholar 

  14. Hart, J.M.: A Practical Guide to Infra-red Thermography for Building Surveys. Building Research Establishment, Watford (2010)

    Google Scholar 

  15. Iwai, D., Sato, K.: Optical superimposition of infrared thermography through video projection. Infrared Phys. Technol. 53(3), 162–172 (2010)

    Article  Google Scholar 

  16. Kordatos, E.Z., Exarchos, D.A., Stavrakos, C., Moropoulou, A., Matikas, T.E.: Infrared thermographic inspection of murals and characterization of degradation in historic monuments. Constr. Build. Mater. 48, 1261–1265 (2013)

    Article  Google Scholar 

  17. Lahiri, B.B., Bagavathiappan, S., Jayakumar, T., Philip, J.: Medical applications of infrared thermography: A review. Infrared Phys. Technol. 55(4), 221–235 (2012)

    Article  Google Scholar 

  18. Liu, Z., Kleiner, Y.: State of the art review of inspection technologies for condition assessment of water pipes. Measurement 46(1), 1–15 (2013)

    Article  Google Scholar 

  19. Maillard, S., Cadith, J., Eschimese, D., Walaszek, H., Mooshofer, H., Candore, J., Bodnar, J.: Towards the use of passive and active infrared thermography to inspect metallic components in the mechanical industry. In: 10th International Conference on Quantitative InfraRed Thermography (2010)

    Google Scholar 

  20. Maldague, X.P.: Nondestructive Evaluation of Materials by Infrared Thermography. Springer Science & Business Media, London (2012)

    Google Scholar 

  21. de Marchi, L., Ceruti, A., Marzani, A., Liverani, A.: Augmented reality to support on-field post-impact maintenance operations on thin structures. J. Sens. 2013 (2013)

    Google Scholar 

  22. Meola, C., Christophe, A., Carlomagno, G.M., Klaus, G., Ermanno, G., Ivana, K., Petr, K., Carosena, M., Rocco, P., Roberto, R., et al.: Infrared thermography recent advances and future trends (2012)

    Google Scholar 

  23. Naimark, M.: Two unusual projection spaces. Presence 14(5), 597–605 (2005)

    Article  Google Scholar 

  24. Newcombe, R.A., Davison, A.J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: KinectFusion: Real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136 (2011)

    Google Scholar 

  25. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., Fuchs, H.: The office of the future: A unified approach to image-based modeling and spatially immersive displays. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 179–188 (1998)

    Google Scholar 

  26. Raskar, R., Welch, G., Fuchs, H.: Spatially augmented reality. In: First IEEE Workshop on Augmented Reality (IWAR 1998), pp. 11–20 (1998)

    Google Scholar 

  27. Schaefer, A., Cook, N., Church, J., Basarab, J., Perry, B., Miller, C., Tong, A.: The use of infrared thermography as an early indicator of bovine respiratory disease complex in calves. Res. Vet. Sci. 83(3), 376–384 (2007)

    Article  Google Scholar 

  28. Thanh, N.T.: Infrared thermography for the detection and characterization of buried objects. Uitgeverij VUBPRESS Brussels Univ. Press 23 (2007)

    Google Scholar 

  29. Vidas, S., Moghadam, P.: HeatWave: A handheld 3D thermography system for energy auditing. Energ. Build. 66(2013), 445–460 (2013)

    Article  Google Scholar 

  30. Vollmer, M., Möllmann, K.P.: Infrared Thermal Imaging: Fundamentals, Research and Applications. Wiley, Weinheim (2010)

    Book  Google Scholar 

  31. Yahav, S., Giloh, M.: Infrared Thermography-Applications in Poultry Biological Research. INTECH Open Access Publisher (2012)

    Google Scholar 

  32. Yang, R., Chen, Y.: Design of a 3-D infrared imaging system using structured light. IEEE Trans. Instrum. Meas. 60(2), 608–617 (2011)

    Article  Google Scholar 

  33. Yang, R., Yang, W., Chen, Y., Wu, X.: Geometric calibration of IR camera using trinocular vision. J. Lightwave Technol. 29(24), 3797–3803 (2011)

    Article  Google Scholar 

  34. Zhang, X., Li, J., Zhang, Z., Du, Y.: Region registration of large-scale IR/visual images based on improved SC algorithm. In: 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT 2014), pp. 928225–928225 (2014)

    Google Scholar 

  35. Živcák, J., Hudák, R., Madarász, L., Rudas, I.J.: Methodology, Models and Algorithms in Thermographic Diagnostics. Springer, Heidelberg (2013)

    Google Scholar 

  36. Projection Mapping. http://projection-mapping.org/. Accessed 12 Feb 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saverio Debernardis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Debernardis, S., Fiorentino, M., Uva, A.E., Monno, G. (2016). A System to Exploit Thermographic Data Using Projected Augmented Reality. In: De Paolis, L., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2016. Lecture Notes in Computer Science(), vol 9768. Springer, Cham. https://doi.org/10.1007/978-3-319-40621-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40621-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40620-6

  • Online ISBN: 978-3-319-40621-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics