Skip to main content

Calculation of Analogs for the Largest Lyapunov Exponents for Acoustic Data by Means of Artificial Neural Networks

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2016 (ISNN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9719))

Included in the following conference series:

Abstract

A method for calculating the largest Lyapunov exponents analogs for the numerical series obtained from acoustic experimental data is proposed. It is based on the use of artificial neural networks for constructing special additional series which are necessary in the process of calculating the Lyapunov exponents. The musical compositions have been used as acoustic data. It turned out that the error of the largest Lyapunov exponent computations within a single musical composition is sufficiently small. On the other hand for the compositions with different acoustic content there were obtained various numerical values Lyapunov exponents. This enables to make conclusion that the proposed procedure for calculating the Lyapunov exponents is adequate. It also allows to use the obtained results as an additional macroscopic characteristics of acoustic data for comparative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benettin, G., Galgani, L., Giorgilli, A., Strelcin, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems: a method for computing all of them. pt. I: theory. pt. II: numerical applications. Meccanica 15, 9–30 (1980)

    Article  MATH  Google Scholar 

  2. Geist, K., Parlitz, U., Lauterborn, W.: Comparison of different methods for computing Lyapunov exponents. Progr. Theor. Phys. 83, 875–893 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ershov, S.V., Potapov, A.B.: On the concept of stationary Lyapunov basis. Phys. D 118, 167–198 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sano, M., Sawada, Y.: Measurements of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55, 1082–1085 (1985)

    Article  MathSciNet  Google Scholar 

  6. Eckman, J.P., Kamphorst, S.O., Ruelle, D., Ciliberto, S.: Lyapunov exponents from time series. Phys. Rev. A 34, 4971–4979 (1986)

    Article  MathSciNet  Google Scholar 

  7. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65, 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77–87 (1994)

    Article  Google Scholar 

  9. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  10. Golovko, M.A.: Neural network techniques for chaotic signal processing. scientific session of the moscow engineering physics institute. In: VII All-Russian Scientific and Technical Conference “Neuroinformatics-2005”. Lectures on Neuroinformatics, pp. 43–91. Moscow Engineering Physics Institute, Moscow (2005). (in Russian)

    Google Scholar 

  11. Jeong, J., Moir, T.J.: Kepstrum approach to real-time speech-enhancement methods using two microphones. Res. Lett. Inf. Math. Sci. 7(1), 135–145 (2005)

    Google Scholar 

  12. Jun, Z., et al.: Using mel-frequency cepstral coefficients in missing data technique. EURASIP J. Appl. Sig, Process. 3(1), 340–346 (2004)

    Article  Google Scholar 

  13. Logan, B., et al.: Mel frequency cepstral coefficients for music modeling. In: ISMIR (2000)

    Google Scholar 

  14. Sung, B.K., Chung, M.B., Ko, I.J.: A feature based music content recognition method using simplified MFCC. Int. J. Princ. Appl. Inf. Sci. 2(1), 13–23 (2008)

    Google Scholar 

  15. Huang, N.E., et al.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brown, R., Bryant, P., Abarbanel, H.: Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys. Rev. A 43, 2787–2806 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila A. Dmitrieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chernykh, G.A., Kuperin, Y.A., Dmitrieva, L.A., Navleva, A.A. (2016). Calculation of Analogs for the Largest Lyapunov Exponents for Acoustic Data by Means of Artificial Neural Networks. In: Cheng, L., Liu, Q., Ronzhin, A. (eds) Advances in Neural Networks – ISNN 2016. ISNN 2016. Lecture Notes in Computer Science(), vol 9719. Springer, Cham. https://doi.org/10.1007/978-3-319-40663-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40663-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40662-6

  • Online ISBN: 978-3-319-40663-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics