Skip to main content

Motion Detection in Asymmetric Neural Networks

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2016 (ISNN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9719))

Included in the following conference series:

Abstract

To make clear the mechanism of the visual movement is important in the visual system. The prominent feature is the nonlinear characteristics as the squaring and rectification functions, which are observed in the retinal and visual cortex networks. Conventional model for motion processing in cortex, is the use of symmetric quadrature functions with Gabor filters. This paper proposes a new motion sensing processing model in the asymmetric networks. To make clear the behavior of the asymmetric nonlinear network, white noise analysis and Wiener kernels are applied. It is shown that the biological asymmetric network with nonlinearities is effective and general for generating the directional movement from the network computations. The qualitative analysis is performed between the asymmetrical network and the conventional quadrature model. The results are applicable to the V1 and MT model of the neural networks in the cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reichard, W.: Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Rosenblith edn. Wiley, New York (1961)

    Google Scholar 

  2. Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2(2), 284–298 (1985)

    Article  Google Scholar 

  3. Heess, N., Bai, R.W.: Direction opponency, not quadrature, is key to the 1/4 cycle preference for apparent motion in the motion energy model. J. Neurosci. 30(34), 11300–11304 (2010)

    Article  Google Scholar 

  4. Chubb, C., Sperling, G.: Drift-Balanced Random Stimuli, A General Basis for Studying Non-Fourier Motion. J. Optical Soc. of America A, 1986–2006 (1988)

    Google Scholar 

  5. Taub, E., Victor, J.D., Conte, M.: Nonlinear preprocessing in short-range motion. Vis. Res. 37, 1459–1477 (1997)

    Article  Google Scholar 

  6. Simonceli, E.P., Heeger, D.J.: A model of neuronal responses in visual area MT. Vis. Res. 38, 743–761 (1996)

    Article  Google Scholar 

  7. Heeger, D.J.: Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992)

    Article  Google Scholar 

  8. Marmarelis, P.Z., Marmarelis, V.Z.: Analysis of Physiological Systems – The White Noise Approach. Plenum Press, New York (1978)

    Book  MATH  Google Scholar 

  9. Marmarelis, V.Z.: Nonlinear Dynamic Modeling of Physiological Systems. Wiley-IEEE Press, New Jersey (2004)

    Book  Google Scholar 

  10. Marmarelis, V.Z.: Modeling methodology for nonlinear physiological systems. Ann. Biomed. Eng. 25, 239–251 (1997)

    Article  Google Scholar 

  11. Wiener, N.: Nonlinear Problems in Random Theory. The MIT Press, Cambridge (1966)

    Google Scholar 

  12. Sakuranaga, M., Naka, K.I.: Signal transmission in the catfish retina. III. Transmissioto type-C cell. J. Neurophysiol. 53(2), 411–428 (1985)

    Google Scholar 

  13. Naka, K.I., Sakai, H.M., Ishii, N.: Generation of transformation of second order nonlinearity in catfish retina. Ann. Biomed. Eng. 16, 53–64 (1988)

    Article  Google Scholar 

  14. Lee, Y.W., Schetzen, M.: Measurements of the Wiener kernels of a nonlinear by cross-correlation. Int. J. of Control 2, 237–254 (1965)

    Article  Google Scholar 

  15. Ishii, N., Ozaki, M., Sasaki, H.: Correlation computations for movement detection in neural networks. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3214, pp. 124–130. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Ishii, N., Deguchi, T., Kawaguchi, M.: Neural computations by asymmetric networks with nonlinearities. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 37–45. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohiro Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ishii, N., Deguchi, T., Kawaguchi, M., Sasaki, H. (2016). Motion Detection in Asymmetric Neural Networks. In: Cheng, L., Liu, Q., Ronzhin, A. (eds) Advances in Neural Networks – ISNN 2016. ISNN 2016. Lecture Notes in Computer Science(), vol 9719. Springer, Cham. https://doi.org/10.1007/978-3-319-40663-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40663-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40662-6

  • Online ISBN: 978-3-319-40663-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics