Skip to main content

When Neural Network Computation Meets Evolutionary Computation: A Survey

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2016 (ISNN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9719))

Included in the following conference series:

Abstract

Neural network (NN) and evolutionary computation (EC) are two of the most popular and important techniques in computational intelligence, which can be combined together to solve the complex real world problems. This paper represents a review of the researches that combined NN and EC. There are 3 main research focuses as follows. In the first research focus, EC algorithms have been widely used to optimize the structure and parameter of the NN, including weight, structure, learning rates, and others. In the second research focus, lots literatures have witnessed that EC based NNs are widespread in the applications such as classification, automatic control, prediction, and many other fields. These two kinds of researches into combining NN and EC are mainly focuses on using EC algorithms to optimize NN, to enhance the NN performance and the NN application ability. Our survey finds that particle swarm optimization is the most popular EC algorithm that the researchers choice to optimize NN in recent year, while genetic algorithm and differential evolution are also widely used. In the third research focus, there are also researches adopted NN as a tool to enhance the performance of EC algorithms. Although the literatures in this focus are not as many as the above two focuses, the existing results show that NN has great potential in enhancing EC algorithms. The survey shows that when NN and EC meet, combining them would result in an effective way to deal with the real world application. This interesting research topic has become more and more significant in the field of computer science and still has much room for development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fogel, D.B.: Evolutionary Computation: The Fossil Record. Wiley-IEEE Press, Hoboken (1998)

    Book  MATH  Google Scholar 

  3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 6th IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  4. Holland, J.H.: Genetic algorithms. Sci. Am. 267, 44–50 (1992)

    Article  Google Scholar 

  5. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor (1975)

    MATH  Google Scholar 

  6. Dorigo, M., Mauro, B., Thomas, S.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  7. Dorigo, M., Vittorio, M., Alberto, C.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996)

    Article  Google Scholar 

  8. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Slowik, A.: Application of an adaptive differential evolution algorithm with multiple trial vectors to artificial neural network training. IEEE Trans. Industr. Electron. 58(8), 3160–3167 (2011)

    Article  Google Scholar 

  10. Tan, S.H., Watada, J., Ibrahim, Z., Khalid, M.: Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects. IEEE Trans. Neural Netw. Learn. Syst. 26(5), 933–950 (2015)

    Article  MathSciNet  Google Scholar 

  11. Caballero, J.C.F., Martínez, F.J., Hervás, C., Gutiérrez, A.: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks. IEEE Trans. Neural Netw. Learn. Syst. 21(5), 750–770 (2010)

    Article  Google Scholar 

  12. Han, M., Fan, J., Wang, J.: A dynamic feedforward neural network based on gaussian particle swarm optimization and its application for predictive control. IEEE Trans. Neural Netw. Learn. Syst. 22(9), 1457–1468 (2011)

    Article  Google Scholar 

  13. Lin, C.J., Chen, C.H., Lin, C.T.: A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 39(1), 55–68 (2009)

    Article  Google Scholar 

  14. Meng, K., Dong, Z.Y., Wang, D.H., Wong, K.P.: A self-adaptive rbf neural network classifier for transformer fault analysis. IEEE Trans. Power Syst. 25(3), 1350–1360 (2010)

    Article  Google Scholar 

  15. Foo, Y.W., Goh, C., Lim, H.C., Zhan, Z.H., Li, Y.: Evolutionary neural network based energy consumption forecast for cloud computing. In: Proceedings of International Conference on Cloud Computing Research and Innovation, pp. 53–64 (2015)

    Google Scholar 

  16. Kentzoglanakis, K., Poole, M.: A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(2), 358–371 (2012)

    Article  Google Scholar 

  17. Chai, R., Ling, S.H., Hunter, G.P., Tran, Y., Nguyen, H.T.: Brain-computer interface classifier for wheelchair commands using neural network with fuzzy particle swarm optimization. IEEE J. Biomed. Health Inf. 18(5), 1614–1624 (2014)

    Article  Google Scholar 

  18. Juang, C.F., Chang, Y.C., Hsiao, C.M.: Evolving gaits of a hexapod robot by recurrent neural networks with symbiotic species-based particle swarm optimization. IEEE Trans. Industr. Electron. 58(7), 3110–3119 (2011)

    Article  Google Scholar 

  19. San, P.P., Ling, S.H., Nguyen, H.T.: Industrial application of evolvable block-based neural network to hypoglycemia monitoring system. IEEE Trans. Industr. Electron. 60(12), 5892–5901 (2013)

    Article  Google Scholar 

  20. Miranda, V., da Hora Martins, J., Palma, V.: Optimizing large scale problems with metaheuristics in a reduced space mapped by autoencoders—application to the wind-hydro coordination. IEEE Trans. Power Syst. 29(6), 3078–3085 (2014)

    Article  Google Scholar 

  21. Chen, C.H., Lin, C.J., Lin, C.T.: Nonlinear system control using adaptive neural fuzzy networks based on a modified differential evolution. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 39(4), 459–473 (2009)

    Article  Google Scholar 

  22. Tan, Y., He, Y., Cui, C., Qiu, G.: A novel method for analog fault diagnosis based on neural networks and genetic algorithms. IEEE Trans. Instrum. Meas. 57(11), 2631–2639 (2008)

    Article  Google Scholar 

  23. Lin, C.T., Prasad, M., Saxena, A.: An improved polynomial neural network classifier using real-coded genetic algorithm. IEEE Trans. Syst. Man Cybern. Syst. 45(11), 1389–1401 (2015)

    Article  Google Scholar 

  24. Horng, J.T., Chang, S.F., Wu, T.Y., Chen, P.L., Hung, Y.H.: Thermal optimal design for plain plate-fin heat sinks by using neuro-genetic method. IEEE Trans. Compon. Packag. Technol. 31(2), 449–460 (2008)

    Article  Google Scholar 

  25. Chen, H., Gong, Y., Hong, X.: Online modeling with tunable RBF network. IEEE Trans. Cybern. 43(3), 935–947 (2013)

    Article  Google Scholar 

  26. Amjady, N., Keynia, F., Zareipour, H.: Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization. IEEE Trans. Sustain. Energ. 2(3), 265–276 (2011)

    Article  Google Scholar 

  27. Hung, Y.C., Lin, F.J., Hwang, J.C., Chang, J.K., Ruan, K.C.: Wavelet fuzzy neural network with asymmetric membership function controller for electric power steering system via improved differential evolution. IEEE Trans. Power Electron. 30(4), 2350–2362 (2015)

    Article  Google Scholar 

  28. Lin, F.J., Chen, S.Y., Teng, L.T., Chu, H.: Recurrent functional-link-based fuzzy neural network controller with improved particle swarm optimization for a linear synchronous motor drive. IEEE Trans. Magn. 45(8), 3151–3165 (2009)

    Article  Google Scholar 

  29. Amjady, N., Keynia, F., Zareipour, H.: Short-term load forecast of mic rogrids by a new bilevel prediction strategy. IEEE Trans. Smart Grid 1(3), 286–294 (2010)

    Article  Google Scholar 

  30. Gutiérrez, P.A., Hervás-Martínez, C., Martínez-Estudillo, F.J.: Logistic regression by means of evolutionary radial basis function neural networks. IEEE Trans. Neural Netw. 22(2), 246–263 (2011)

    Article  Google Scholar 

  31. Tripathy, M., Maheshwari, R.P., Verma, H.K.: Power transformer differential protection based on optimal probabilistic neural network. IEEE Trans. Power Delivery 25(1), 102–112 (2010)

    Article  Google Scholar 

  32. Wei, H.L., Billings, S., Zhao, Y., Guo, L.: Lattice dynamical wavelet neural networks implemented using particle swarm optimization for spatio-temporal system identification. IEEE Trans. Neural Netw. 20(1), 181–185 (2009)

    Article  Google Scholar 

  33. Patnaik, A., Sinha, S.N.: Design of custom-made fractal multi-band antennas using ANN-PSO. IEEE Antennas Propag. Mag. 53(4), 94–101 (2011)

    Article  Google Scholar 

  34. Song, M., Pedrycz, W.: Granular neural networks: concepts and development schemes. IEEE Trans. Neural Netw. Learn. Syst. 24(4), 542–553 (2013)

    Article  Google Scholar 

  35. Chen, Z.G., Du, K.J., Zhan, Z.H, Zhang, J.: Deadline constrained cloud computing resources scheduling for cost optimization based on dynamic objective genetic algorithm. In: 2015 IEEE Congress on Evolutionary Computation, pp. 708–714 (2015)

    Google Scholar 

  36. Chen, Z.G., Zhan, Z.H., Li, H.H., Du, K.J., Zhong, J.H., Foo, W.Y., Li, Y., Zhang, J.: Deadline constrained cloud computing resources scheduling through an ant colony system approach. In: 2015 International Conference on Cloud Computing Research and Innovation, pp. 112–119 (2015)

    Google Scholar 

  37. AlRashidi, M.R., El-Hawary, M.E.: A survey of particle swarm optimization applications in electric power systems. IEEE Trans. Evol. Comput. 13(4), 913–918 (2009)

    Article  Google Scholar 

  38. Shen, M., Zhan, Z.H., Chen, W.N., Gong, Y.J., Zhang, J., Li, Y.: Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks. IEEE Trans. Industr. Electron. 61(12), 7141–7151 (2014)

    Article  Google Scholar 

  39. Zhan, Z.H., Li, J., Cao, J., Zhang, J., Chung, H., Shi, Y.H.: Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems. IEEE Trans. Cybern. 43(2), 445–463 (2013)

    Article  Google Scholar 

  40. Li, Y.H., Zhan, Z.H., Lin, S., Zhang, J., Luo, X.N.: Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems. Inf. Sci. 293(1), 370–382 (2015)

    Article  Google Scholar 

  41. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  42. Pehlivanoglu, Y.V.: A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks. IEEE Trans. Evol. Comput. 17(3), 436–452 (2013)

    Article  Google Scholar 

  43. Liu, B., Zhao, D., Reynaert, P., Gielen, G.G.: Synthesis of integrated passive components for high-frequency RF ICs based on evolutionary computation and machine learning techniques. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(10), 1458–1468 (2011)

    Article  Google Scholar 

  44. Shinozaki, T., Watanabe, S.: Structure discovery of deep neural network based on evolutionary algorithms. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4979–4983 (2015)

    Google Scholar 

  45. Gong, M., Liu, J., Li, H., Cai, Q., Su, L.: A multiobjective sparse feature learning model for deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3263–3277 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Zhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, Z., Zhan, Z., Shi, W., Chen, W., Zhang, J. (2016). When Neural Network Computation Meets Evolutionary Computation: A Survey. In: Cheng, L., Liu, Q., Ronzhin, A. (eds) Advances in Neural Networks – ISNN 2016. ISNN 2016. Lecture Notes in Computer Science(), vol 9719. Springer, Cham. https://doi.org/10.1007/978-3-319-40663-3_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40663-3_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40662-6

  • Online ISBN: 978-3-319-40663-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics