Abstract
Preprocessing plays a major role in efficient propositional reasoning but has been less studied in first-order theorem proving. In this paper we propose a predicate elimination procedure which can be used as a preprocessing step in first-order theorem proving and is also applicable for simplifying quantified formulas in a general framework of satisfiability modulo theories (SMT). We describe how this procedure is implemented in a first-order theorem prover iProver and show that many problems in the TPTP library can be simplified using this procedure. We also evaluated our preprocessing on the HWMCC’15 hardware verification benchmarks and show that more than 50 % of predicates can be eliminated without increasing the problem sizes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
iProver is available at http://www.cs.man.ac.uk/~korovink/iprover.
References
Ackermann, W.: Untersuchungen über das Eliminationsproblem der matheraatischen Logik. Math. Ann. 110, 390–413 (1935)
Amla, N., McMillan, K.L.: Combining abstraction refinement and SAT-based model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 405–419. Springer, Heidelberg (2007)
Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 341–355. Springer, Heidelberg (2004)
Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson and Voronkov [32], pp. 19–99
Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)
Biere, A.: Resolve and expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)
Biere, A.: Picosat essentials. JSAT 4(2–4), 75–97 (2008)
Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)
Biere, A., Heljanko, K.: Hardware model checking competition report (2015). http://fmv.jku.at/hwmcc15/Biere-HWMCC15-talk.pdf
Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. IEEE Trans. Syst. Man Cybern. Part B 34(1), 52–59 (2004)
Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)
Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)
Gabbay, D.M., Schmidt, R.A., Szalas, A.: Second-Order Quantifier Elimination: Foundations, Computational Aspects and Applications, Studies in Logic: Mathematical Logic andFoundations, vol. 12. College Publications (2008)
Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. In: Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR 1992), pp. 425–435 (1992)
Gupta, A., Ganai, M.K., Yang, Z., Ashar, P.: Iterative abstraction using sat-based BMC with proof analysis. In: International Conference on Computer-Aided Design, ICCAD, pp. 416–423 (2003)
Hoder, K., Khasidashvili, Z., Korovin, K., Voronkov, A.: Preprocessing techniques for first-order clausification. In: Cabodi, G., Singh, S. (eds.) Formal Methods in Computer-Aided Design, FMCAD, pp. 44–51. IEEE (2012)
Hoder, K., Kovács, L., Voronkov, A.: Interpolation and symbol elimination in vampire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 188–195. Springer, Heidelberg (2010)
Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012)
Khasidashvili, Z., Korovin, K., Tsarkov, D.: EPR-based k-induction with counterexample guided abstraction refinement. In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) GCAI 2015. Global Conference on Artificial Intelligence. EPiC Series in Computing, vol. 36, pp. 137–150. EasyChair (2015)
Koopmann, P., Schmidt, R.A.: Uniform interpolation and forgetting for \(\cal {ALC}\) ontologies with aboxes. In: Bonet, B., Koenig, S. (eds.) Proceedings of the AAAI-2015, pp. 175–181. AAAI Press (2015)
Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)
Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 239–270. Springer, Heidelberg (2013)
Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)
Kovács, L., Voronkov, A.: First-Order theorem proving and vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013)
Lynce, I., Silva, J.P.M.: Probing-based preprocessing techniques for propositional satisfiability. In: 15th IEEE International Conference on Tools with Artificial Intelligence ICTAI, p. 105. IEEE Computer Society (2003)
de Moura, L., Bjørner, N.S.: Efficient E-matching for SMT solvers. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007)
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract davis-putnam-logemann-loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)
Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson and Voronkov [32], pp. 335–367
Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of quantified formulas in SMT. In: Formal Methods in Computer-Aided Design, FMCAD, pp. 195–202. IEEE (2014)
Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in volume 2s). Elsevier and MIT Press, Cambridge (2001)
Schmidt, R.A.: The Ackermann approach for modal logic, correspondence theory and second-order reduction. J. Appl. Logic 10(1), 52–74 (2012)
Schulz, S.: Simple and efficient clause subsumption with feature vector indexing. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 45–67. Springer, Heidelberg (2013)
Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)
Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-Solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 108–125. Springer, Heidelberg (2000)
Subbarayan, S., Pradhan, D.K.: NiVER: non-increasing variable elimination resolution for preprocessing SAT instances. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)
Sutcliffe, G.: The TPTP World – Infrastructure for automated reasoning. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 1–12. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Khasidashvili, Z., Korovin, K. (2016). Predicate Elimination for Preprocessing in First-Order Theorem Proving. In: Creignou, N., Le Berre, D. (eds) Theory and Applications of Satisfiability Testing – SAT 2016. SAT 2016. Lecture Notes in Computer Science(), vol 9710. Springer, Cham. https://doi.org/10.1007/978-3-319-40970-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-40970-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40969-6
Online ISBN: 978-3-319-40970-2
eBook Packages: Computer ScienceComputer Science (R0)