Abstract
In a recent work, we introduced an abstraction based algorithm for solving quantified Boolean formulas (QBF) in prenex negation normal form (PNNF) where quantifiers are only allowed in the formula’s prefix and negation appears only in front of variables. In this paper, we present a modified algorithm that lifts the restriction on prenex quantifiers. Instead of a linear quantifier prefix, the algorithm handles tree-shaped quantifier hierarchies where different branches can be solved independently. In our implementation, we exploit this property by solving independent branches in parallel. We report on an evaluation of our implementation on a recent case study regarding the synthesis of finite-state controllers from \(\omega \)-regular specifications.
This work was partially supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available at https://www.react.uni-saarland.de/tools/quabs/.
References
Biere, A.: PicoSAT essentials. JSAT 4(2–4), 75–97 (2008)
Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer, Heidelberg (2012)
Egly, U., Seidl, M., Woltran, S.: A solver for QBFs in negation normal form. Constraints 14(1), 38–79 (2009)
Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of reactive synthesis. In: Proceedings of QUANTIFY (2015)
Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013)
Goultiaeva, A., Iverson, V., Bacchus, F.: Beyond CNF: a circuit-based QBF solver. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 412–426. Springer, Heidelberg (2009)
Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)
Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Proceedings of IJCAI, pp. 325–331. AAAI Press (2015)
Jordan, C., Kaiser, L., Lonsing, F., Seidl, M.: MPIDepQBF: towards parallel QBF solving without knowledge sharing. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 430–437. Springer, Heidelberg (2014)
Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010)
Lewis, M.D.T., Schubert, T., Becker, B.: QmiraXT - a multithreaded QBF solver. In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV), Berlin, Germany, 2–4 March 2009, pp. 7–16. Universitätsbibliothek Berlin, Germany (2009)
Lewis, M.D.T., Schubert, T., Becker, B., Marin, P., Narizzano, M., Giunchiglia, E.: Parallel QBF solving with advanced knowledge sharing. Fundam. Inf. 107(2–3), 139–166 (2011)
Lonsing, F., Biere, A.: Nenofex: expanding NNF for QBF solving. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 196–210. Springer, Heidelberg (2008)
Mota, B.D., Nicolas, P., Stéphan, I.: A new parallel architecture for QBF tools. In: Proceedings of HPCS, pp. 324–330. IEEE (2010)
Pigorsch, F., Scholl, C.: Exploiting structure in an AIG based QBF solver. In: Proceedings of DATE, pp. 1596–1601. IEEE (2009)
QBF Gallery 2014: QCIR-G14: a non-prenex non-CNF format for quantified Boolean formulas. http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf
Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Proceedings of FMCAD, pp. 136–143. IEEE (2015)
Tentrup, L.: Solving QBF by abstraction. CoRR abs/1604.06752 (2016). https://arxiv.org/abs/1604.06752
Tu, K.-H., Hsu, T.-C., Jiang, J.-H.R.: QELL: QBF reasoning with extended clause learning and levelized SAT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 343–359. Springer, Heidelberg (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Tentrup, L. (2016). Non-prenex QBF Solving Using Abstraction. In: Creignou, N., Le Berre, D. (eds) Theory and Applications of Satisfiability Testing – SAT 2016. SAT 2016. Lecture Notes in Computer Science(), vol 9710. Springer, Cham. https://doi.org/10.1007/978-3-319-40970-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-40970-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40969-6
Online ISBN: 978-3-319-40970-2
eBook Packages: Computer ScienceComputer Science (R0)