Abstract
We examine existing resolution systems for quantified Boolean formulas (QBF) and answer the question which of these calculi can be lifted to the more powerful Dependency QBFs (DQBF). An interesting picture emerges: While for QBF we have the strict chain of proof systems \(\textsf {Q-Res}< \textsf {IR-calc} < \textsf {IRM-calc} \), the situation is quite different in DQBF. The obvious adaptations of Q-Res and likewise universal resolution are too weak: they are not complete. The obvious adaptation of IR-calc has the right strength: it is sound and complete. IRM-calc is too strong: it is not sound any more, and the same applies to long-distance resolution. Conceptually, we use the relation of DQBF to effectively propositional logic (EPR) and explain our new DQBF calculus based on IR-calc as a subsystem of first-order resolution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azhar, S., Peterson, G., Reif, J.: Lower bounds for multiplayer non-cooperative games of incomplete information. J. Comput. Math. Appl. 41, 957–992 (2001)
Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 19–99. Elsevier and MIT Press (2001)
Balabanov, V., Chiang, H.J.K., Jiang, J.H.R.: Henkin quantifiers and boolean formulae: a certification perspective of DQBF. Theor. Comput. Sci. 523, 86–100 (2014)
Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1), 45–65 (2012)
Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Heidelberg (2014)
Beyersdorff, O., Bonacina, I., Chew, L.: Lower bounds: from circuits to QBF proof systems. In: Proceedings of ACM Conference on Innovations in Theoretical Computer Science (ITCS 2016), pp. 249–260. ACM (2016)
Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014)
Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Proceedings of Symposium on Theoretical Aspects of Computer Science, pp. 76–89. LIPIcs series (2015)
Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Feasible interpolation for QBF resolution calculi. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 180–192. Springer, Heidelberg (2015)
Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Are short proofs narrow? QBF resolution is not simple. In: Proceedings of Symposium on Theoretical Aspects of Computer Science (STACS 2016) (2016)
Egly, U.: On sequent systems and resolution for QBFs. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 100–113. Springer, Heidelberg (2012)
Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.) [26], pp. 243–251
Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF solving. In: Sinz, C., Egly, U. (eds.) [26], pp. 103–116
Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving DQBF through quantifier elimination. In: Nebel, W., Atienza, D. (eds.) Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE 2015, Grenoble, France, March 9–13, 2015. pp. 1617–1622. ACM (2015)
Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean formulas. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 761–780. IOS Press (2009)
Henkin, L.: Some remarks on infinitely long formulas. J. Symbolic Logic, pp. 167–183 (1961). Pergamon Press
Heule, M.J., Seidl, M., Biere, A.: Efficient extraction of skolem functions from QRAT proofs. In: Formal Methods in Computer-Aided Design (FMCAD), 2014, pp. 107–114. IEEE (2014)
Heule, M.J.H., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 91–106. Springer, Heidelberg (2014)
Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577, 25–42 (2015)
Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 67–82. Springer, Heidelberg (2013)
Büning, K.H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)
Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317–353 (1980)
Peterson, G.L., Reif, J.: Multiple-person alternation. In: 20th Annual Symposium on Foundations of Computer Science, 1979, pp. 348–363, October 1979
Segerlind, N.: The complexity of propositional proofs. Bull. Symbolic Logic 13(4), 417–481 (2007)
Seidl, M., Lonsing, F., Biere, A.: qbf2epr: a tool for generating EPR formulas from QBF. In: Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) PAAR-2012. Third Workshop on Practical Aspects of Automated Reasoning. EPiC Series in Computing, vol. 21, pp. 139–148. EasyChair (2013)
Sinz, C., Egly, U. (eds.): SAT 2014. LNCS, vol. 8561. Springer, Heidelberg (2014)
Slivovsky, F., Szeider, S.: Variable dependencies and Q-resolution. In: Sinz, C., Egly, U. (eds.) [26], pp. 269–284
Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: preliminary report. In: Aho, A.V., Borodin, A., Constable, R.L., Floyd, R.W., Harrison, M.A., Karp, R.M., Strong, H.R. (eds.) Proceedings of the 5th Annual ACM Symposium on Theory of Computing, April 30 – May 2, 1973, Austin, Texas, USA, pp. 1–9. ACM (1973)
Urquhart, A.: The complexity of propositional proofs. Bull. Symbolic Logic 1, 425–467 (1995)
Van Gelder, A.: Contributions to the theory of practical quantified boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 647–663. Springer, Heidelberg (2012)
Wimmer, R., Gitina, K., Nist, J., Scholl, C., Becker, B.: Preprocessing for DQBF. In: Heule, M., et al. (eds.) SAT 2015. LNCS, vol. 9340, pp. 173–190. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4_13
Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: ICCAD, pp. 442–449 (2002)
Acknowledgments
This research was supported by grant no. 48138 from the John Templeton Foundation, EPSRC grant EP/L024233/1, and a Doctoral Training Grant from the EPSRC (2nd author).
Martin Suda was supported by the EPSRC grant EP/K032674/1 and the ERC Starting Grant 2014 SYMCAR 639270.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Beyersdorff, O., Chew, L., Schmidt, R.A., Suda, M. (2016). Lifting QBF Resolution Calculi to DQBF. In: Creignou, N., Le Berre, D. (eds) Theory and Applications of Satisfiability Testing – SAT 2016. SAT 2016. Lecture Notes in Computer Science(), vol 9710. Springer, Cham. https://doi.org/10.1007/978-3-319-40970-2_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-40970-2_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40969-6
Online ISBN: 978-3-319-40970-2
eBook Packages: Computer ScienceComputer Science (R0)