Skip to main content

Exploring the Usefulness of Formal Concept Analysis for Robust Detection of Spatio-temporal Spike Patterns in Massively Parallel Spike Trains

  • Conference paper
  • First Online:
Graph-Based Representation and Reasoning (ICCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9717))

Included in the following conference series:

Abstract

The understanding of the mechanisms of information processing in the brain would yield practical impact on innovations such as brain-computer interfaces. Spatio-temporal patterns of spikes (or action potentials) produced by groups of neurons have been hypothesized to play an important role in cortical communication [1]. Due to modern advances in recording techniques at millisecond resolution, an empirical test of the spatio-temporal pattern hypothesis is now becoming possible in principle. However, existing methods for such a test are limited to a small number of parallel spike recordings. We propose a new method that is based on Formal Concept Analysis (FCA, [11]) to carry out this intensive search. We show that evaluating conceptual stability [18] is an effective way of separating background noise from interesting patterns, as assessed by precision and recall rates on ground truth data. Because of the scaling behavior of stability evaluation, our approach is only feasible on medium-sized data sets consisting of a few dozens of neurons recorded simultaneously for some seconds. We would therefore like to encourage investigations on how to improve this scaling, to facilitate research in this important area of computational neuroscience.

A. Yegenoglu and P. Quaglio—Equal contribution; S. Grün and D. Endres—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abeles, M.: Corticonics: Neural Circuits of the Cerebral Cortex, 1st edn. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  2. Andrews, S.: In close, a fast algorithm for computing formal concepts. In: Seventeenth International Conference on Conceptual Structures (2009)

    Google Scholar 

  3. Babin, M.A., Kuznetsov, S.O.: Approximating concept stability. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 7–15. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Berger, D., Borgelt, C., Louis, S., Morrison, A., Grün, S.: Efficient identification of assembly neurons withinmassively parallel spike trains. Comput. Intell. Neurosci. 2010, 1–18 (2010). doi:10.1155/2010/439648. Aricle ID 439648

    Google Scholar 

  5. Bienenstock, E.: A model of neocortex. Netw. Comput. Neural Syst. 6(2), 179–224 (1995)

    Article  MATH  Google Scholar 

  6. Borgelt, C.: Frequent item set mining. In: Wiley Interdisciplinary Reviews (WIREs): Data Mining and Knowledge Discovery, vol. 2, pp. 437–456. Wiley, Chichester (2012). doi:10.1002/widm.1074

    Google Scholar 

  7. Diesmann, M., Gewaltig, M.-O., Aertsen, A.: Characterization of synfire activity by propagating ‘pulse packets’. In: Bower, J.M. (ed.) Computational Neuroscience: Trends in Research, pp. 59–64. Academic Press, San Diego (1996)

    Google Scholar 

  8. Diesmann, M., Gewaltig, M.-O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature 402(6761), 529–533 (1999)

    Article  Google Scholar 

  9. Endres, D., Adam, R., Giese, M.A., Noppeney, U.: Understanding the semantic structure of human fMRI brain recordings with formal concept analysis. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 96–111. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Endres, D.M., Földiák, P., Priss, U.: An application of formal concept analysis to semantic neural decoding. Ann. Math. Artif. Intell. 57(3–4), 233–248 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  12. Gerstein, G.L., Williams, E.R., Diesmann, M., Grün, S., Trengove, C.: Detecting synfire chains in parallel spike data. J. Neurosci. Methods 206(1), 54–64 (2012)

    Article  Google Scholar 

  13. Grün, S.: Data-driven significance estimation of precise spike correlation. J. Neurophysiol. 101(3), 1126–1140 (2009)

    Article  Google Scholar 

  14. Grün, S., Abeles, M., Diesmann, M.: Impact of higher-order correlations on coincidence distributions of massively parallel data. In: Marinaro, M., Scarpetta, S., Yamaguchi, Y. (eds.) Dynamic Brain - from Neural Spikes to Behaviors. LNCS, vol. 5286, pp. 96–114. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Izhikevich, E.M.: Polychronization: computation with spikes. Neural Comput. 18, 245–282 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). Accessed 25 Jan 2016

    Google Scholar 

  17. Krajca, P., Vychodil, V.: Distributed algorithm for computing formal concepts using map-reduce framework. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1–4), 101–115 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kuznetsov, S.O., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theoret. Artif. Intell. 14, 189–216 (2002)

    Article  MATH  Google Scholar 

  20. Lindig, C.: Fast concept analysis. In: Working with Conceptual Structures - Contributions to ICCS 2000, pp. 152–161. Shaker Verlag, August 2000

    Google Scholar 

  21. Louis, S., Gerstein, G.L., Grün, S., Diesmann, M.: Surrogate spike train generation through dithering in operational time. Front. Comput. Neurosci. 4, 127 (2010)

    Article  Google Scholar 

  22. Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J., Buzsaki, G.: Replay and time compression of recurring spike sequences in the hippocampus. J. Neurosci. 19(21), 9497–9507 (1999)

    Google Scholar 

  23. Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  24. Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Hamutal, S., Abeles, M.: Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol. 79(6), 2857–2874 (1998)

    Google Scholar 

  25. Riehle, A., Wirtssohn, S., Grün, S., Brochier, T.: Mapping the spatio-temporal structure of motor cortical lfp and spiking activities during reach-to-grasp movements. Front. Neural Circ. 7, 48 (2013). doi:10.3389/fncir.2013.00048

    Google Scholar 

  26. Roth, C., Obiedkov, S.A., Kourie, D.G.: On succinct representation of knowledge community taxonomies with formal concept analysis. Int. J. Found. Comput. Sci. 19(2), 383–404 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schrader, S., Grün, S., Diesmann, M., Gerstein, G.: Detecting synfire chain activity using massively parallel spike train recording. J. Neurophysiol. 100, 2165–2176 (2008)

    Article  Google Scholar 

  28. Schwarz, D.A., Lebedev, M.A., Hanson, T.L., Dimitrov, D.F., Lehew, G., Meloy, J., Rajangam, S., Subramanian, V., Ifft, P.J., Li, Z., Ramakrishnan, A., Tate, A., Zhuang, K.Z., Nicolelis, M.A.L.: Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat. Methods 11, 670–676 (2014)

    Article  Google Scholar 

  29. Torre, E., Picado-Muiño, D., Denker, M., Borgelt, C., Grün, S.: Statistical evaluation of synchronous spike patterns extracted by frequent item set mining. Front. Comput. Neurosci. 7, 132 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Helmholtz Portfolio Supercomputing and Modeling for the Human Brain (SMHB), Human Brain Project (HBP, EU Grant 604102), and DFG SPP Priority Program 1665 (GR 1753/4-1). DE acknowledges support from the DFG under IRTG 1901 ‘The Brain in Action’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonja Grün or Dominik Endres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Yegenoglu, A., Quaglio, P., Torre, E., Grün, S., Endres, D. (2016). Exploring the Usefulness of Formal Concept Analysis for Robust Detection of Spatio-temporal Spike Patterns in Massively Parallel Spike Trains. In: Haemmerlé, O., Stapleton, G., Faron Zucker, C. (eds) Graph-Based Representation and Reasoning. ICCS 2016. Lecture Notes in Computer Science(), vol 9717. Springer, Cham. https://doi.org/10.1007/978-3-319-40985-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40985-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40984-9

  • Online ISBN: 978-3-319-40985-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics