Abstract
This paper addresses the problem of computing the parameterization of a smooth local-support spline curve for data fitting of noisy points by using an immunological approach. Given an initial set (not necessarily optimal) of breakpoints, our method applies a popular artificial immune systems technique called clonal selection algorithm to perform curve parameterization. The resulting optimal data parameters are then used for further refinement of the breakpoints via the deBoor method. In this way, the original non-convex optimization method is transformed into a convex one, subsequently solved by least-squares singular value decomposition. The method is applied to two illustrative examples (human hand and ski goggles, each comprised of three curves) of two-dimensional sets of noisy data points with very good experimental results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barnhill, R.E.: Geometric Processing for Design and Manufacturing. SIAM, Philadelphia (1992)
de Boor, C.A.: Practical Guie to Splines. Springer, Heidelberg (2001)
De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, London (2002)
De Castro, L.N., Von Zuben, F.J.: Artificial Immune Systems: Part I - Basic Theory and Applications, Technical report-RT DCA 01/99 (1999)
De Castro, L.N., Von Zuben, F.J.: The clonal selection algorithm with engineering applications. In: Proceedings of GECCO00, Workshop on Artificial Immune Systems and their Applications, Las Vegas, USA, pp. 36–37 (2000)
De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)
Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications. Springer, Berlin (1999)
Dierckx, P.: Curve and Surface Fitting with Splines. Oxford University Press, Oxford (1993)
Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proceedings of IEEE Symposium on Research in Security and Privacy. Los Alamitos, CA, pp. 202–212 (1994)
Gálvez, A., Cobo, A., Puig-Pey, J., Iglesias, A.: Particle swarm optimization for Bézier surface reconstruction. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part II. LNCS, vol. 5102, pp. 116–125. Springer, Heidelberg (2008)
Gálvez, A., Iglesias, A.: Efficient particle swarm optimization approach for data fitting with free knot B-splines. Comput. Aided Des. 43(12), 1683–1692 (2011)
Gálvez, A., Iglesias, A.: Particle swarm optimization for non-uniform rational B-spline surface reconstruction from clouds of 3D data points. Inf. Sci. 192(1), 174–192 (2012)
Gálvez, A., Iglesias, A.: A new iterative mutually-coupled hybrid GA-PSO approach for curve fitting in manufacturing. Appl. Soft Comput. 13(3), 1491–1504 (2013)
Gálvez, A., Iglesias, A.: Firefly algorithm for polynomial Bézier surface parameterization. J. Appl. Math. 9p. (2013). Article ID 237984
Gálvez, A., Iglesias, A.: Particle-based meta-model for continuous breakpoint optimization in smooth local-support curve fitting. Appl. Math. Comput. 275, 195–212 (2016)
Gálvez, A., Iglesias, A., Avila, A.: Hybridizing mesh adaptive search algorithm and artificial immune systems for discrete rational Bézier curve approximation. Vis.Comput. 32, 393–402 (2016)
Gálvez, A., Iglesias, A., Avila, A., Otero, C., Arias, R., Manchado, C.: Elitist clonal selection algorithm for optimal choice of free knots in B-spline data fitting. Appl. Soft Comput. 26, 90–106 (2015)
Gálvez, A., Iglesias, A., Cobo, A., Puig-Pey, J., Espinola, J.: Bézier curve and surface fitting of 3D point clouds through genetic algorithms, functional networks and least-squares approximation. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part II. LNCS, vol. 4706, pp. 680–693. Springer, Heidelberg (2007)
Gálvez, A., Iglesias, A., Puig-Pey, J.: Iterative two-step genetic-algorithm-based method for efficient polynomial B-spline surface reconstruction. Inf. Sci. 182(1), 56–76 (2012)
Greensmith, J., Aickelin, U.: Artificial dendritic cells: multi-faceted perspectives. In: Bargiela, A., Pedrycz, W. (eds.) Human-Centric Information Processing Through Granular Modelling. SCI, vol. 182, pp. 375–395. Springer, Heidelberg (2009)
Hart, E., Timmis, J.: Application areas of AIS: past, present and future. Appl. Soft Comput. 8(1), 191–201 (2008)
Iglesias, A., Gálvez, A., Loucera, C.: Two simulated annealing optimization schemas for rational Bézier curve fitting in the presence of noise. Math. Prob. Eng. 17p. (2016). Article ID 8241275
Jacobson, T.J., Murphy, M.J.: Optimized knot placement for B-splines in deformable image registration. Med. Phys. 38(8), 4579–4592 (2011)
Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Heidelberg (2002)
Jerne, N.K.: Toward a network theory of the immune system. Ann. Immunol. 125, 373–389 (1974)
Piegl, L., Tiller, W.: The NURBS Book. Springer Verlag, Berlin/Heidelberg (1997)
Sarfraz, M., Raza, S.A.: Capturing outline of fonts using genetic algorithms and splines. In: Proceedings of Fifth International Conference on Information Visualization IV 2001, pp. 738–743. IEEE Computer Society Press (2001)
Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial immune systems. Theoret. Comput. Sci. 403(1), 11–32 (2008)
Varady, T., Martin, R.R., Cox, J.: Reverse engineering of geometric models - an introduction. Comput. Aided Des. 29(4), 255–268 (1997)
Yoshimoto, F., Harada, T., Yoshimoto, Y.: Data fitting with a spline using a real-coded algorithm. Comput. Aided Des. 35, 751–760 (2003)
Zhao, X., Zhang, C., Yang, B., Li, P.: Adaptive knot placement using a GMM-based continuous optimization algorithm in B-spline curve approximation. Comput. Aided Des. 43, 598–604 (2011)
Acknowledgements
This research has been kindly supported by the Computer Science National Program of the Spanish Ministry of Economy and Competitiveness, Project Ref. #TIN2012-30768, Toho University, and the University of Cantabria.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Iglesias, A., Gálvez, A., Avila, A. (2016). Immunological Approach for Data Parameterization in Curve Fitting of Noisy Points with Smooth Local-Support Splines. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2016. Lecture Notes in Computer Science(), vol 9712. Springer, Cham. https://doi.org/10.1007/978-3-319-41000-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-41000-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-40999-3
Online ISBN: 978-3-319-41000-5
eBook Packages: Computer ScienceComputer Science (R0)