Skip to main content

Logic Gates Designed with Domain Label Based on DNA Strand Displacement

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9712))

Included in the following conference series:

  • 1776 Accesses

Abstract

The construction of DNA logic gates plays a very significant role in solving NP-complete problems, because DNA computer applied to solving NP-complete problems consists of DNA logic gates. Although AND Gate module and OR Gate module with dual-rail logic constructed by Winfree avoided the instability caused by NOT Gate, the scale of dual-rail logic circuit is two times that of single-rail logic circuit. In this paper, domain t and domain f are applied to representing signal 1 and signal 0 respectively instead of high concentration and low concentration, and AND Gate, OR Gate, NOT Gate with domain label (domain t and f) are constructed. AND Gate, OR Gate, NOT Gate with domain label have good stability and encapsulation, which can be applied to DNA computing in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green, S.J., Lubrich, D., Turberfield, A.J.: DNA hairpins: fuel for autonomous DNA devices. Biophys. J. 91(8), 2966–2975 (2006)

    Article  Google Scholar 

  2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  3. Baron, R., Lioubashevski, O., Katz, E., Niazov, T., Willner, I.: Logic gates and elementary computing by enzymes. J. Phys. Chem. A 110(27), 8548–8553 (2006)

    Article  Google Scholar 

  4. Zavalov, O., Bocharova, V., Privman, V., Katz, E.: Enzyme-based logic: OR gate with double-sigmoid filter response. J. Phys. Chem. B 116(32), 9683–9689 (2012)

    Article  Google Scholar 

  5. Bakshi, S., Zavalov, O., Halámek, J., Privman, V., Katz, E.: Modularity of biochemical filtering for inducing sigmoid response in both inputs in an enzymatic AND gate. J. Phys. Chem. B 117(34), 9857–9865 (2013)

    Article  Google Scholar 

  6. Privman, V., Fratto, B.E., Zavalov, O., Halámek, J., Katz, E.: Enzymatic AND logic gate with sigmoid response induced by photochemically controlled oxidation of the output. J. Phys. Chem. B 117(25), 7559–7568 (2013)

    Article  Google Scholar 

  7. Halámek, J., Zavalov, O., Halámková, L., Korkmaz, S., Privman, V., Katz, E.: enzyme-based logic analysis of biomarkers at physiological concentrations: AND gate with double-sigmoid “filter” response. J. Phys. Chem. B 116(15), 4457–4464 (2012)

    Article  Google Scholar 

  8. Strack, G., Pita, M., Ornatska, M., Katz, E.: Boolean logic gates that use enzymes as input signals. ChemBioChem 9(8), 1260–1266 (2008)

    Article  Google Scholar 

  9. Zhou, J., Arugula, M.A., Halamek, J., Pita, M., Katz, E.: Enzyme-based NAND and NOR logic gates with modular design. J. Phys. Chem. B 113(49), 16065–16070 (2009)

    Article  Google Scholar 

  10. Moseley, F., Halámek, J., Kramer, F., Poghossian, A., Schöning, M.J., Katz, E.: An enzyme-based reversible CNOT logic gate realized in a flow system. Analyst 139(8), 1839–1842 (2014)

    Article  Google Scholar 

  11. Halamek, J., Bocharova, V., Arugula, M.A., Strack, G., Privman, V., Katz, E.: Realization and properties of biochemical-computing biocatalytic XOR gate based on enzyme inhibition by a substrate. J. Phys. Chem. B 115(32), 9838–9845 (2011)

    Article  Google Scholar 

  12. Privman, V., Zhou, J., Halámek, J., Katz, E.: Realization and properties of biochemical-computing biocatalytic XOR gate based on signal change. J. Phys. Chem. B 114(42), 13601–13608 (2010)

    Article  Google Scholar 

  13. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  14. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  15. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)

    Article  Google Scholar 

  16. Levine, R.D.: Molecular Reaction Dynamics. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  17. Lakin, M.R., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit design. J. R. Soc. Interface 9(68), 470–486 (2012)

    Article  Google Scholar 

  18. Jayaprakasan, V., Vijayakumar, S., Bhaaskaran, V.K.: Evaluation of the conventional vs. ancient computation methodology for energy efficient arithmetic architecture. In: 2011 International Conference on Process Automation, Control and Computing (PACC), pp. 1–4. IEEE Press (2011)

    Google Scholar 

  19. Baugh, C.R., Wooley, B.A.: A two’s complement parallel array multiplication algorithm. IEEE Trans. Comput. 12, 1045–1047 (1973)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Nos. 31370778, 61370005, 61425002, 61402066, 61402067), the Basic Research Program of the Key Lab in Liaoning Province Educational Department (Nos. LZ2014049, LZ2015004), the Project Supported by Natural Science Foundation of Liaoning Province (No. 2014020132), the Project Supported by Scientific Research Fund of Liaoning Provincial Education (No. L2014499), and by the Program for Liaoning Key Lab of Intelligent Information Processing and Network Technology in University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changjun Zhou or Qiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, Q., Zhou, C., Zhang, Q. (2016). Logic Gates Designed with Domain Label Based on DNA Strand Displacement. In: Tan, Y., Shi, Y., Niu, B. (eds) Advances in Swarm Intelligence. ICSI 2016. Lecture Notes in Computer Science(), vol 9712. Springer, Cham. https://doi.org/10.1007/978-3-319-41000-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41000-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40999-3

  • Online ISBN: 978-3-319-41000-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics