Skip to main content

An Improved LMDS Algorithm

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9713))

Included in the following conference series:

  • 1763 Accesses

Abstract

Classical multidimensional scaling (CMDS) is a widely used method for dimensionality reduction and data visualization, but it’s very slow. Landmark MDS (LMDS) is a fast algorithm of CMDS. In LMDS, some data points are designated as landmark points. When the intrinsic dimension of the landmark points is less than the intrinsic dimension of the data set, the embedding recovered by LMDS is not consistent with that of classical multidimensional scaling. A selection algorithm of landmark points is put forward in this paper to ensure the intrinsic dimension of the landmarks to be equal to that of the data set, so as to ensure that the embedding recovered by LMDS is the same as that of CMDS. By introducing the selection algorithm into the original LMDS, an improved LMDS algorithm called iLMDS is presented in this paper. The experimental results verify the consistency of iLMDS and CMDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trevor, F.C., Michael, A.A.C.: Multidimensional Scaling. Chapman & Hall/CRC, London (2001)

    MATH  Google Scholar 

  2. Ingram, S., Munzner, T.: Dimensionality reduction for documents with nearest neighbor queries. Neurocomputing 150, 557–569 (2015)

    Article  Google Scholar 

  3. Mjolsness, E., DeCoste, D.: Machine learning for science: state of the art and future prospects. Science 293(5537), 2051–2055 (2001)

    Article  Google Scholar 

  4. Patel, A.P., Tirosh, I., Trombetta, J.J., et al.: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190), 1396–1401 (2014)

    Article  Google Scholar 

  5. Wang, S., Zhuo, Z., Yang, H., et al.: An approach to facial expression recognition integrating radial basis function kernel and multidimensional scaling analysis. Soft. Comput. 18(7), 1363–1371 (2014)

    Article  Google Scholar 

  6. Vogelstein, J.T., Park, Y., Ohyama, T., et al.: Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 344(6182), 386–392 (2014)

    Article  Google Scholar 

  7. Arkin, A., Shen, P., Ross, J.: A test case of correlation metric construction of a reaction pathway from measurements. Science 277(5330), 1275–1279 (1997)

    Article  Google Scholar 

  8. Li, S.S.-M., Wang, C.C.L., Kin, C.H.: Bending-Invariant correspondence matching on 3-D human bodies for feature point extraction. IEEE Trans. Autom. Sci. Eng. 8(4), 805–814 (2011)

    Article  Google Scholar 

  9. Chalmers, M.: A linear iteration time layout algorithm for visualizing high dimensional data. In: Proceedings of IEEE Visualization 1996, pp. 127–132. IEEE Press, New York (1996)

    Google Scholar 

  10. Morrison, A., Ross, G., Chalmers, M.: Fast multidimensional scaling through sampling, springs and interpolation. Inf. Visual. 2(1), 68–77 (2003)

    Article  Google Scholar 

  11. Williams, M., Munzner, T.: Steerable, progressive multidimensional scaling. In: IEEE Symposium on Information Visualization 2004, pp. 57–64. IEEE Press, Austin (2004)

    Google Scholar 

  12. Faloutsos, C., Lin, K.: FastMap: a fast algorithm for indexing, data-mining, and visualization. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data, pp. 163—174. ACM Press, Washington (1995)

    Google Scholar 

  13. Silva, V.D., Tenenbaum, J.B.: Sparse multidimensional scaling using landmark points. Technical report, Stanford University, Palo Alto (2004)

    Google Scholar 

  14. Silva, V.D., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: NIPS 2002, pp. 705–712. MIT Press, Cambridge, Massachusettes (2003)

    Google Scholar 

  15. Platt, J.C.: Fast embedding of sparse music similarity graphs. In: NIPS 2003, pp. 571–578. MIT Press, Cambridge, Massachusettes (2004)

    Google Scholar 

  16. Brandes, U., Pich, C.: An experimental study on distance-based graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218–229. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Silva, J., Marques, J., Lemos, J.: Selecting landmark points for sparse manifold learning. In: NIPS 2005, pp. 1241–1248. MIT Press, Cambridge, Massachusettes (2006)

    Google Scholar 

  18. Gu, R.J., Xu, W.B.: An improved manifold learning algorithm for data visualization. In: IEEE International Conference on Machine Learning and Cybernetics 2006, pp. 1170–1173. IEEE Press, Piscataway, N.J. (2006)

    Google Scholar 

  19. Li, J., Hao, P.: Finding representative landmarks of data on manifolds. Pattern Recogn. 42(11), 2335–2352 (2009)

    Article  MATH  Google Scholar 

  20. Young, G., Householder, A.S.: Discussion of a set of points in terms of their mutual distances. Psychometrika 3(1), 19–22 (1938)

    Article  MATH  Google Scholar 

  21. Data for MATLAB hackers. http://www.cs.toronto.edu/~roweis/data.html

  22. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiguo Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Qu, T., Cai, Z. (2016). An Improved LMDS Algorithm. In: Tan, Y., Shi, Y., Li, L. (eds) Advances in Swarm Intelligence. ICSI 2016. Lecture Notes in Computer Science(), vol 9713. Springer, Cham. https://doi.org/10.1007/978-3-319-41009-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41009-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41008-1

  • Online ISBN: 978-3-319-41009-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics