Skip to main content

Traversal Languages Capturing Isomorphism Classes of Sierpiński Gaskets

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9726))

  • 659 Accesses

Abstract

We consider recursive structural assembly using regular d-dimensional simplexes such that a structure at every level is obtained by joining \(d + 1\) structures from a previous level. The resulting structures are similar to the Sierpiński gasket. We use intersection graphs and index sequences to describe these structures. We observe that for each \(d>1\) there are uncountably many isomorphism classes of these structures. Traversal languages that consist of labels of walks that start at a given vertex can be associated with these structures, and we find that these traversal languages capture the isomorphism classes of the structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, J.E., Putnam, I.F.: Topological invariants for substitution tilings and their associated \(C^*\)-algebras Erg. Th. Dyn. Syst. 18(3), 509–537 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Goodman, R.P., et al.: Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310(5754), 166–1665 (2005)

    Article  Google Scholar 

  3. Goodman-Strauss, C.: Matching rules and substitution tilings. Ann. Math. 147, 181–223 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Goodman-Strauss, C.: Aperiodic hierarchical tilings. In: Sadoc, J.F., Rivier, N. (eds.) Foams and Emulsions. NATO ASI Series: Series E: Applied Sciences, vol. 354, pp. 481–496. Springer, Dordrecht (1999)

    Chapter  Google Scholar 

  5. Grigorchuk, R., Šunić, Z.: Asymptotic aspects of Schreier graphs and Hanoi Towers groups. Proc. Symposia in Pure Mathematics 77, 183–198 (2008)

    Article  MATH  Google Scholar 

  6. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. Freeman, New York (1987)

    MATH  Google Scholar 

  7. Han, D., Pal, S., Nangreave, J., Deng, Z., Liu, Y., Yan, H.: DNA origami with complex curvatures in 3-dimensional space. Science 332, 342–346 (2011)

    Article  Google Scholar 

  8. Klavžar, S., Milutinović, U.: Graphs \(S(n, k)\) and a variant of the tower of Hanoi problem. Czechoslovak Math. J. 47(1), 95–104 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hinz, A.M., Klavžar, S., Milutinović, U., Petr, C.: The Tower of Hanoi — Myths and Maths. Springer, Basel (2013)

    Book  MATH  Google Scholar 

  10. Jolivet, T., Kari, J.: Undecidable properties of self-affine sets and multi-tape automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 352–364. Springer, Heidelberg (2014)

    Google Scholar 

  11. Jonoska, N., Karpenko, D.: Active tile self-assembly, part 2: recursion and self-similarity. Int. J. Found. Comp. Sci. 25(2), 165–194 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jonoska, N., Krajcevski, M., McColm, G.: Languages associated with crystallographic symmetry. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 216–228. Springer, Heidelberg (2014)

    Google Scholar 

  13. Jonoska, N., Krajcevski, M., McColm, G.: Counter machines and crystallographic structures. Nat. Comput. 15(1), 97–113 (2016)

    Article  MathSciNet  Google Scholar 

  14. Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 126(8), 2324–2325 (2004)

    Article  Google Scholar 

  15. Padilla, J.E., Sha, R., Chen, J., Jonoska, N., Seeman, N.C.: A signal-passing DNA-strand-exchange mechanism for active self-assembly of DNA nanostructures. Angew. Chem. Int. Ed. Engl. 54(20), 5939–5942 (2015)

    Article  Google Scholar 

  16. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  17. Sadun, L.: Personal communication (2016)

    Google Scholar 

  18. Šunić, Z.: Twin towers of Hanoi. Eur. J. Comb. 33(7), 1691–1707 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vecchia, G.D., Sanges, C.: A recursively scalable network VLSI implementation. Future Gener. Comput. Syst. 4, 235–243 (1988)

    Article  Google Scholar 

  20. Zhang, F., Jiang, S., Wu, S., Li, Y., Mao, C., Liu, Y., Yan, H.: Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nature Nanotechnol. 10, 779–784 (2015)

    Article  Google Scholar 

  21. Zhang, W., Oganov, A.R., Goncharov, A.F., Zhu, Q., Boulfelfel, S.E., Lyakhov, A.O., Stavrou, E., Somayazulu, M., Prakapenka, V.B., Konpkov, Z.: Unexpected stable stoichiometries of sodium chlorides. Science 342(6165), 1502–1505 (2013)

    Article  Google Scholar 

  22. Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C., Seeman, N.C.: From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461(7260), 74–77 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Chaim Goodman-Strauss and Lorenzo Sadun for their kind assistance. This work has been supported in part by the NSF grants CCF-1526485 and the NIH grant GM109459.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory McColm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jonoska, N., Krajčevski, M., McColm, G. (2016). Traversal Languages Capturing Isomorphism Classes of Sierpiński Gaskets. In: Amos, M., CONDON, A. (eds) Unconventional Computation and Natural Computation. UCNC 2016. Lecture Notes in Computer Science(), vol 9726. Springer, Cham. https://doi.org/10.1007/978-3-319-41312-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41312-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41311-2

  • Online ISBN: 978-3-319-41312-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics