Skip to main content

Discrete DNA Reaction-Diffusion Model for Implementing Simple Cellular Automaton

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9726))

Abstract

We introduce a theoretical model of DNA chemical reaction-diffusion network capable of performing a simple cellular automaton. The model is based on well-characterized enzymatic bistable switch that was reported to work in vitro. Our main purpose is to propose an autonomous, feasible, and macro DNA system for experimental implementation.

As a demonstration, we choose a maze-solving cellular automaton. The key idea to emulate the automaton by chemical reactions is assuming a space discretized by hydrogel capsules which can be regarded as cells. The capsule is used both to keep the state uniform and control the communication between neighboring capsules.

Simulations under continuous and discrete space are successfully performed. The simulation results indicate that our model evolves as expected both in space and time from initial conditions. Further investigation also suggests that the ability of the model can be extended by changing parameters. Possible applications of this research include pattern formation and a simple computation. By overcoming some experimental difficulties, we expect that our framework can be a good candidate to program and implement a spatio-temporal chemical reaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rangnekar, A., LaBean, T.H.: Building DNA nanostructures for molecular computation, templated assembly, and biological applications. Acc. Chem. Res. 47(6), 1778–1788 (2014)

    Article  Google Scholar 

  2. Zhang, F., Nangreave, J., Liu, Y., Yan, H.: Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136(32), 11198–11211 (2014)

    Article  Google Scholar 

  3. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)

    Article  Google Scholar 

  4. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)

    Article  Google Scholar 

  5. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  6. Turberfield, A.J., Yurke, B.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)

    Article  Google Scholar 

  7. Fujii, T., Rondelez, Y.: Predator-prey molecular ecosystems. ACS Nano 7(1), 27–34 (2013)

    Article  Google Scholar 

  8. Kuzuya, A., Ohya, Y.: Nanomechanical molecular devices made of DNA origami. Acc. Chem. Res. 47(6), 1742–1749 (2014)

    Article  Google Scholar 

  9. Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular robotics: a new paradigm for artifacts. New Gener. Comput. 31, 27–45 (2013)

    Article  Google Scholar 

  10. Hagiya, M., Konagaya, A., Kobayashi, S., Saito, H., Murata, S.: Molecular robots with sensors and intelligence. Acc. Chem. Res. 47(6), 1681–1690 (2014)

    Article  Google Scholar 

  11. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. B Biol. Sci. 237(641), 37–72 (1952)

    Article  Google Scholar 

  12. Lee, K.-J., McCormick, W.D., Pearson, J.E., Swinney, H.L.: Experimental observation of self-replicating spots in a reaction-diffusion system. Nature 369(6477), 215–218 (1994)

    Article  Google Scholar 

  13. Vanag, V.K., Epstein, I.R.: Tomography of reaction-diffusion microemulsions reveals three-dimensional turing patterns. Science 331(1309), 1309–1312 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 1616–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chirieleison, S.M., Allen, P.B., Simpson, Z.B., Ellington, A.D., Chen, X.: Pattern transformation with DNA circuits. Nat. Chem. 5(12), 1000–1005 (2013)

    Article  Google Scholar 

  16. Padirac, A., Fujii, T., Estévez-Torres, A., Rondelez, Y.: Spatial waves in synthetic biochemical networks. J. Am. Chem. Soc. 135(39), 14586–14592 (2013)

    Article  Google Scholar 

  17. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  18. Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. J. R. Soc. Interface 6(Suppl 4), S419–S436 (2009)

    Article  Google Scholar 

  19. Aubert, N., Mosca, C., Fujii, T., Hagiya, M., Rondelez, Y.: Computer-assisted design for scaling up systems based on DNA reaction networks. J. R. Soc. Interface 11(93), 20131167 (2014)

    Article  Google Scholar 

  20. Allen, P.B., Chen, X., Simpson, Z.B., Ellington, A.D.: Modeling scalable pattern generation in DNA reaction networks. Artif. Life 13, 441–448 (2012). http://dx.doi.org/10.7551/978-0-262-31050-5-ch058

    MathSciNet  Google Scholar 

  21. Scalise, D., Schulman, R.: Designing modular reaction-diffusion programs for complex pattern formation. Technology 02(01), 55–66 (2014)

    Article  Google Scholar 

  22. Dalchau, N., Seelig, G., Phillips, A.: Computational design of reaction-diffusion patterns using DNA-based chemical reaction networks. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 84–99. Springer, Heidelberg (2014)

    Google Scholar 

  23. Hagiya, M., Wang, S., Kawamata, I., Murata, S., Isokawa, T., Peper, F., Imai, K.: On DNA-based gellular automata. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 177–189. Springer, Heidelberg (2014)

    Google Scholar 

  24. Scalise, D., Schulman, R.: Emulating cellular automata in chemical reaction-diffusion networks. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 67–83. Springer, Heidelberg (2014)

    Google Scholar 

  25. Padirac, A., Fujii, T., Rondelez, Y.: Bottom-up construction of in vitro switchable memories. Proc. Nat. Acad. Sci. 109(47), E3212–E3220 (2012)

    Article  Google Scholar 

  26. Fischlechner, M., Schaerli, Y., Mohamed, M.F., Patil, S., Abell, C., Hollfelder, F.: Evolution of enzyme catalysts caged in biomimetic gel-shell beads. Nat. Chem. 6(9), 791–796 (2014)

    Article  Google Scholar 

  27. Machado, A.H., Lundberg, D., Ribeiro, A.J., Veiga, F.J., Miguel, M.G., Lindman, B., Olsson, U.: Encapsulation of DNA in macroscopic and nanosized calcium alginate gel particles. Langmuir. 29(51), 15926–15935 (2013)

    Article  Google Scholar 

  28. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Nayfeh, B.A.: Cellular automata for solving mazes. Dr. Dobb’s J. 18(2), 32–38 (1993)

    MathSciNet  Google Scholar 

  30. Saber, M.A., Mirenkov, N.: A visual representation of cellular automata-like systems. J. Visual Lang. Comput. 15(6), 409–438 (2004)

    Article  Google Scholar 

  31. Hutton, T., Munafo, R., Trevorrow, A., Rokicki, T., Wills, D.: Ready, a cross-platform implementation of various reaction-diffusion systems. https://github.com/GollyGang/ready

  32. Allen, P., Chen, X., Ellington, A.: Spatial control of DNA reaction networks by DNA sequence. Molecules 17(12), 13390–13402 (2012)

    Article  Google Scholar 

  33. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131(47), 17303–17314 (2009)

    Article  Google Scholar 

  34. Stellwagen, E., Yongjun, L., Stellwagen, N.C.: Unified description of electrophoresis and diffusion for DNA and other polyions. Biochemistry 42(40), 11745–11750 (2003)

    Article  Google Scholar 

  35. Pluen, A., Netti, P.A., Jain, R.K., Berk, D.A.: Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys. J. 77(1), 542–552 (1999)

    Article  Google Scholar 

  36. Bremond, N., Santanach-Carreras, E., Chu, L.-Y., Bibette, J.: Formation of liquid-core capsules having a thin hydrogel membrane: liquid pearls. Soft Matter 6(11), 2484–2488 (2010)

    Article  Google Scholar 

  37. Rendell, P.: Turing universality of the game of life. In: Adamatzky, A. (ed.) Collision-Based Computing, pp. 513–539. Springer, London (2002)

    Chapter  Google Scholar 

  38. Feng, L., Romulus, J., Li, M., Sha, R., Royer, J., Kun-Ta, W., Qin, X., Seeman, N.C., Weck, M., Chaikin, P.: Cinnamate-based DNA photolithography. Nat. Mater. 12, 747–753 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

We appreciate Masami Hagiya to motivate this research. Helpful advice from the experimental viewpoints were given by Hiroyuki Asanuma, Takashi Arimura, Yusuke Hara, and Nobuyoshi Miyamoto. We thank Teijiro Isokawa and Ferdinand Peper for discussion including the suggestion to simulate a normal automaton by a cellular automaton. This research was supported by Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Robotics” (No. 24104005) and Grant-in-Aid for Young Scientists (Start-up, 26880002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibuki Kawamata .

Editor information

Editors and Affiliations

A Reaction diffusion model

A Reaction diffusion model

The equations of our model are shown below. Terms for diffusion, which we added to the original equations, are highlighted by red color.

figure a
figure b
figure c

where

figure d

As kinetic parameters, we used the fitted values of the original article [25]. Diffusion coefficient of DNA in solution was roughly estimated from experimental values [34, 35].

figure e

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kawamata, I., Yoshizawa, S., Takabatake, F., Sugawara, K., Murata, S. (2016). Discrete DNA Reaction-Diffusion Model for Implementing Simple Cellular Automaton. In: Amos, M., CONDON, A. (eds) Unconventional Computation and Natural Computation. UCNC 2016. Lecture Notes in Computer Science(), vol 9726. Springer, Cham. https://doi.org/10.1007/978-3-319-41312-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41312-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41311-2

  • Online ISBN: 978-3-319-41312-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics