
Access Control for the Shuffle Index

Sabrina De Capitani di Vimercati1, Sara Foresti1, Stefano Paraboschi2,
Gerardo Pelosi3, and Pierangela Samarati1(B)

1 Università degli Studi di Milano, Crema, CR, Italy
{sabrina.decapitani,sara.foresti,pierangela.samarati}@unimi.it

2 Università degli Studi di Bergamo, Dalmine, BG, Italy
parabosc@unibg.it

3 Politecnico di Milano, Milano, Italy
gerardo.pelosi@polimi.it

Abstract. The shuffle index provides confidentiality guarantees for
accesses to externally outsourced data. In this paper, we extend the shuf-
fle index with support for access control, that is, for enforcing authoriza-
tions on data. Our approach bases on the use of selective encryption and
on the organization of data and authorizations in two shuffle indexes.
Our proposal enables owners to regulate access to their data supporting
authorizations allowing different users access to different portions of the
data, while at the same time guaranteeing confidentiality of access.

1 Introduction

The rapid advancement in ICT and the increasing adoption of cloud comput-
ing paradigms have produced an ever increasing reliance on external parties for
storing and processing data. Together with the clear benefits in term of low
cost and high availability (e.g., [11]), the involvement of external providers for
storing data and providing services raises also issues of ensuring proper protec-
tion of information against the providers themselves (e.g., [12,15]). The research
and industrial community have recognized these issues and investigated different
aspects of the problem, with considerable attention paid to the need to maintain
information confidential to the providers themselves that, even if trustworthy
to provide the service, should not be allowed visibility over the stored data. In
addition to the need to protect confidentiality of the stored data (content confi-
dentiality), recent proposals have been devoting attention to the need to protect
confidentiality of the accesses executed on the data (access confidentiality), that
is, protecting confidentiality on the fact that an access aims at a specific piece of
information or that two accesses aim at the same target (this latter also referred
to as pattern confidentiality). There are several reasons for which access confi-
dentiality should be protected, including the simple fact that breaches to access
confidentiality may leak information on access profiles, and, in the end, even
on the data themselves, therefore breaking data confidentiality itself. Among
the recent proposals specifically considering the access confidentiality problem

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Ranise and V. Swarup (Eds.): DBSec 2016, LNCS 9766, pp. 130–147, 2016.
DOI: 10.1007/978-3-319-41483-6 10



Access Control for the Shuffle Index 131

in database management scenarios (and therefore with attention to efficiency
and functionality guarantees that should be provided) is the shuffle index [5].
The shuffle index provides an index-based hierarchical organization of the data
supporting efficient and effective access execution and provides access confiden-
tiality with limited (compared to classical solutions) performance overhead. The
key idea to provide access confidentiality is a dynamic re-allocation of data at
every access so to breach the otherwise static correspondence between data and
physical blocks in which they are stored.

The shuffle index, while supporting accesses by multiple users [6], assumes
all users to be entitled to access the complete data structure: data are encrypted
with a key shared between the data owner and all users, and all users can retrieve
and decrypt these data, hence accessing the plaintext content. Encryption is
applied only to provide confidentiality (of content and access) with respect to
the storing server. However, in many situations access privileges may need to be
granted selectively, that is, different users should be authorized to view only a
portion of the stored data. While existing solutions for enforcing authorizations
in data outsourcing context in presence of honest-but-curious providers (e.g.,
selective encryption [2,3]) have emerged, they cannot be simply applied in con-
junction with the shuffle index, given the specific characteristics of the index
and its access execution, as well as the need to ensure access confidentiality
guarantees.

In this paper, we provide an approach to support access control over the shuf-
fle index (Sect. 2) to ensure that access to the data be granted only in respect
of authorizations specified by the data owner. Our approach leverages the avail-
ability of selective encryption to provide a self-enforcing layer of protection over
the data themselves. To allow for authorizations enforcement while maintaining
access confidentiality guarantees, our approach makes use of two shuffle indexes:
a primary index, storing and providing access to selectively encrypted data, and
a secondary index, enabling enforcement of access control (Sects. 3 and 4). We
show that our proposal correctly enforces the access control policy established
by the data owner and has limited performance overhead (Sect. 5).

2 Shuffle Index

The shuffle index [5] is a dynamically allocated data structure offering access and
pattern confidentiality while supporting efficient key-based data organization
and retrieval. A data collection organized in a shuffle index is a set of pairs
〈index value, resource〉 with index value a candidate key for the collection (i.e.,
no two resources share the same value for index value) used for index definition,
and resource the corresponding resource associated with the index value. For
simplicity, we assume the data collection to be a relational table R defined over
a simplified schema R(I,Resource), with I the indexed attribute and Resource
the resource content. At the abstract level, a shuffle index for R over I is an
unchained B+-tree (i.e., there are no links between the leaves) with fan-out F
defined over attribute I, storing the tuples in R in its leaves. Each node stores



132 S. De Capitani di Vimercati et al.

up to F −1 ordered values v1, v2, . . . , vq, and has as many children as the number
of values stored plus one. The first child of a node is the root of the subtree
including all values v < v1; its last child is the root of the subtree including all
values v ≥ vq; its i-the child (i = 2, . . . , q) is the root of the subtree including
all values vi−1 ≤ v < vi. Actual resources are stored in the leaves of the tree in
association with their index value. At the logical level, each node is associated
with a logical identifier. Logical identifiers are used in internal nodes as pointers
to their children and do not reflect the order relationship among the values
stored in the nodes. At the physical level, each node is stored in encrypted form
in a physical block and logical identifiers are translated into physical addresses
at the storing server. For the sake of simplicity, we assume that the physical
address of a block storing a node corresponds to the logical identifier of the node
itself. The encrypted node is obtained by encrypting the concatenation of the
node identifier, its content (values and pointers to children or resources), and a
randomly generated nonce (salt). Formally, block b storing node n is defined as
E(k, salt||id||n), where E is a symmetric encryption function with key k and
id is the identifier of node n. Encryption protects the confidentiality of nodes
content and the structure of the tree, as well as the integrity of each node and
of the structure overall. Figure 1(c–e) illustrates an example the abstract (c),
logical (d), and physical (e) level, respectively, of a shuffle index storing the 19
tuples in Fig. 1(a), indexed according to the values of attribute I. Actual tuples
are stored in the leaves of the index structure, where, for simplicity, we however
report only the index values.

To retrieve the tuple with a given index value in the shuffle index, the tree
is traversed from the root following the pointers to the children until a leaf is
reached. Since the shuffle index is stored at the server in encrypted form, such a
process is iterative, with the client retrieving from the server (and decrypting)
one node at a time to determine the child node to be read at the next level.
To protect access and pattern confidentiality, in addition to storing nodes in
encrypted form at the server, the shuffle index uses the following three techniques
in access execution.

– Cover searches: in addition to the target value, additional values, called covers,
are requested. Covers, chosen in such a way to be indistinguishable from the
target and to operate on disjoint paths in the tree (also disjoint from the
path of the target), provide uncertainty to the server on the actual target. If
num cover searches are used, the server will observe access to num cover+1
distinct paths and corresponding leaf blocks, any of which could be the actual
target.

– Repeated access : to avoid the server learning when two accesses refer to the
same target since they would have a path in common, the shuffle index always
produces such an observable by choosing, as one of the covers for an access,
one of the values of the access just before it (if the current access is for the
same target as the previous access, a new cover is used). In this way, the server
always observes a repeated access, regardless of whether the two accesses refer
to the same or to a different target.



Access Control for the Shuffle Index 133

I Resource
1 A Aresource
2 B Bresource
3 C Cresource
4 D Dresource
5 F Fresource
6 G Gresource
7 H Hresource
8 I Iresource
9 J Jresource

10 L Lresource
11 M Mresource
12 N Nresource
13 O Oresource
14 P Presource
15 Q Qresource
16 R Rresource
17 S Sresource
18 T Tresource
19 U Uresource

(a)

Search
target: C
repeated: S
cover: J

(b)

Abstract Index

(c)
Logical Index

(d)
Physical Index

(e)

Fig. 1. An example of a relation (a), an access over it (b), and of abstract (c), logical
(d) and physical (e) shuffle index

– Shuffling : at every access, the nodes involved in the access are shuffled (i.e.,
allocated to different logical identifiers and corresponding physical blocks),
re-encrypted (with a different random salt and including the new identifier of
the block) and re-stored at the server. Shuffling provides dynamic reallocation
of all the accessed nodes, thus destroying the otherwise static correspondence
between physical blocks and their content. This prevents the server from accu-
mulating knowledge on the data allocation as at any access such an allocation
is refreshed.

To illustrate, consider the shuffle index in Fig. 1(c–e) and the search in
Fig. 1(b) for the tuple with index value C, assuming S as repeated access and
J as fresh cover. The access entails reading (i.e., retrieving from the server)
the nodes annotated in the figure, with the server only observing downloads of
the corresponding encrypted blocks in Fig. 1(e) but not able to learn anything
on the block content or on the roles (target, repeated, cover) of the blocks.
Shuffling could produce, after the access, a re-allocation of the accessed nodes.



134 S. De Capitani di Vimercati et al.

Original Relation Primary Index Secondary Index
I Resource ACL

1 A Aresource . . . u1 u2 u3
2 B Bresource . . . u1 u2
3 C Cresource . . . u1 u2
4 D Dresource . . . u2 u3
5 F Fresource . . . u2 u3
6 G Gresource . . . u1 u3
7 H Hresource . . . u1 u3
8 I Iresource . . . u1
9 J Jresource . . . u1

10 L Lresource . . . u1
11 M Mresource . . . u1
12 N Nresource . . . u2
13 O Oresource . . . u2
14 P Presource . . . u2
15 Q Qresource . . . u2
16 R Rresource . . . u3
17 S Sresource . . . u3
18 T Tresource . . . u3
19 U Uresource . . . u3

I Resource
12 ι(A) 123, E(k123, Aresource)
17 ι(B) 12, E(k12, Bresource)
4 ι(C) 12, E(k12, Cresource)
3 ι(D) 23, E(k23, Dresource)
7 ι(F) 23, E(k23, Fresource)
9 ι(G) 13, E(k13, Gresource)

10 ι(H) 13, E(k13, Hresource)
8 ι(I) 1, E(k1, Iresource)
6 ι(J) 1, E(k1, Jresource)

11 ι(L) 1, E(k1, Lresource)
2 ι(M) 1, E(k1, Mresource)

14 ι(N) 2, E(k2, Nresource)
5 ι(O) 2, E(k2, Oresource)

18 ι(P) 2, E(k2, Presource)
16 ι(Q) 2, E(k2, Qresource)
15 ι(R) 3, E(k3, Rresource)
19 ι(S) 3, E(k3, Sresource)
1 ι(T) 3, E(k3, Tresource)

13 ι(U) 3, E(k3, Uresource)

I Resource
10 ι1(A) E(k1, ι(A))
18 ι2(A) E(k2, ι(A))
22 ι3(A) E(k3, ι(A))
5 ι1(B) E(k1, ι(B))
6 ι2(B) E(k2, ι(B))
9 ι1(C) E(k1, ι(C))

25 ι2(C) E(k2, ι(C))
27 ι2(D) E(k2, ι(D))
4 ι3(D) E(k3, ι(D))

19 ι2(F) E(k2, ι(F))
3 ι3(F) E(k3, ι(F))

11 ι1(G) E(k1, ι(G))
7 ι3(G) E(k3, ι(G))

20 ι1(H) E(k1, ι(H))
24 ι3(H) E(k3, ι(H))
15 ι1(I) E(k1, ι(I))
12 ι1(J) E(k1, ι(J))
8 ι1(L) E(k1, ι(L))
1 ι1(M) E(k1, ι(M))

14 ι2(N) E(k2, ι(N))
23 ι2(O) E(k2, ι(O))
26 ι2(P) E(k2, ι(P))
2 ι2(Q) E(k2, ι(Q))

13 ι3(R) E(k3, ι(R))
16 ι3(S) E(k3, ι(S))
21 ι3(T) E(k3, ι(T))
17 ι3(U) E(k3, ι(U))

(a) )c()b(

Fig. 2. Relation of Fig. 1(a) with acls associated with its resources (a), relation for the
primary index (b), relation for the secondary index (c)

For instance, 205→204, 204→207, 207→205 (where X→Y denotes the fact that
the content of node X is moved to Y).

3 Primary and Secondary Indexes for Access Control

Providing access control means enabling data owners to regulate access to their
data and selectively authorize different users with different views over the data.
Figure 2(a) illustrates possible authorizations on the data of Fig. 1(a), consider-
ing three users (u1, u2, u3). The figure reports, for each tuple r in the dataset,
the corresponding acl(r), that is the set of users authorized to access it. (Note
that authorizations do not explicitly report the access privileges, which is con-
sidered to be ‘read’, since we assume access by users to be read-only, with write
operations reserved to the owner.) When clear from the context, with a slight
abuse of notation, in the following we will denote the access control list of a
tuple r as either acl(r) or acl(r[I]), with r[I] its index value. For instance,
acl(A) = {u1,u2,u3}, while acl(B) = {u1,u2}.

Before diving into our solution, we note that there could be two natural and
straightforward approaches to enforce authorizations in the shuffle index, each of
which would have however limitations and drawbacks. A first natural approach
would be to simply associate a key ki with each user ui and produce different



Access Control for the Shuffle Index 135

replicas of the data. Each tuple would be replicated as many times as the number
of users authorized to access it. Each copy would be encrypted with the key of the
user for which it is produced. For instance, with reference to Fig. 2(a) three copies
would be created for index value A and the corresponding resource Aresource,
encrypted with keys k1, k2, and k3, respectively. Different shuffle indexes would
then be defined, one for each user, organizing and supporting accesses to the
tuples that the user is authorized to access. Such an approach, besides bearing
obvious data management problems (as replicas would need to be maintained
consistent) would affect the protection offered by the shuffle index. In fact, it
would organize each shuffle index only on a limited portion of the data (for
each user, only those tuples that she can access, that is, less than half of the
original tuples for each user in our example) with consequent limitations in the
choice of covers. An alternative solution could then be to maintain the shuffle
index as a single structure (so to build it on the complete dataset), and avoid
replicas by producing only one encrypted copy for each tuple. Replicas can be
avoided by considering different encryption keys not only for individual users
but also for user sets (i.e., acls), with a user ui knowing her encryption key ki as
well as those of the acls in which she is included. Each resource would then be
encrypted only once and the encryption key with which it is encrypted known
only to its authorized users. For instance, with reference to Fig. 2(a), Aresource
would be encrypted with key k123 known to all users while Bresource would be
encrypted with key k12 known to u1 and u2 only. While such selective encryption
correctly enforces access to the encrypted resources, it leaves the problem of
ensuring protection (and controlling the possible exposure) of the index values
with which the shuffle index is organized. As a matter of fact, on one hand,
leaving such index values accessible to all users for traversing the tree would
disclose to every user the complete set of index values, even those of the tuples
she is not authorized to access. On the other hand, such index values cannot be
encrypted with the same encryption key used for the corresponding resources,
as otherwise the ability to traverse the tree by users would be affected.

Starting from these observations, we build our approach essentially providing
selective encryption while protecting index values themselves against unautho-
rized users without affecting their ability to retrieve those tuples they are autho-
rized to access. Our approach is based on the definition of two different indexes.
A primary index, defined over an encoded version of the original index values,
and a secondary index, providing a mapping enabling users to retrieve the value
to look for in the primary index. Both indexes make use of an encoding of the
values to be indexed to make them intelligible only to authorized users. We then
start by defining an encoding function as follows.

Definition 1 (Encoding Function). Let R(I,Resource) be a relation with I
defined over domain D. A function ι : D → E is an encoding function for I iff ι
is: (i) non-invertible; (ii) non order-preserving; (iii) injective.

Intuitively, an encoding function maps the domain of index values I onto
another domain of values E , avoiding collisions (i.e., ∀vx, vy ∈ I with vx 	= vy,



136 S. De Capitani di Vimercati et al.

ι(vx) 	= ι(vy)), and in such a way that the original ordering among values is
destroyed. Also, non-invertibility ensures the impossibility of deriving the inverse
function (from encoded to original values). For instance, an encoding function
can be realized as a keyed cryptographic hash function operating on the domain
of attribute I.

The second building block of our solution is the application of selective
encryption, namely encryption of each resource with a key known only to autho-
rized users. To apply selective encryption, we then define a key set for the encryp-
tion policy as follows.

Definition 2 (Encryption Policy Keys). Let R(I,Resource) be a relation, U
be a set of users, and, ∀r ∈R, acl(r)⊆ U be the acl of r. The set K of encryption
policy keys for R is a set K = {ki | ui ∈ U} ∪ {ki1,...,in | ∃r ∈ R, {ui1 , . . . , uin} =
acl(r)} of encryption keys. Each key kX ∈ K has a public label �X . Each user
ui ∈ U knows the set Ki = {ki} ∪ {kX | kX ∈ K ∧ i ∈ X} of keys.

Definition 2 defines all the keys needed (and the knowledge of users on them)
to apply selective encryption, meaning to encrypt the data selectively so that
only authorized users can access them while optimizing key management and
avoiding data replication. The public label associated with a key allows referring
to the key without disclosing its value. Note that knowledge by a user of all
the keys of the access control lists to which she belongs does not require direct
distribution of the keys to the user, since hierarchical organization of keys and use
of publicly available tokens enabling key derivation can provide such a knowledge
to the user [3].

We are now ready to define the first index used by our approach. This first
index, called primary , is the one storing the actual data on which accesses should
operate (i.e., tuples in R). To provide selective access as well as enable all users
to traverse the index without leaking to them information (index values and
resources) they are not authorized to access, the index combines value encoding
and selective encryption. Formally, the primary index is defined as follows.

Definition 3 (Primary Index – Data). Let R(I,Resource) be a relation,
I be the indexing attribute, ι be an encoding function for I computable only
by the data owner, and K be the set of encryption policy keys for R. A pri-
mary index for R over I is a shuffle index over relation P(I,Resource) having
a tuple p for each tuple r ∈ R such that p[I] = ι(r[I]) and p[Resource] =
〈�i1,...,in , E(ki1,...,in , r[Resource])〉, with E a symmetric encryption function,
acl(r) = {ui1 , . . . , uin}, and ki1,...,in ∈ K

The primary index stores original data in encrypted form, encrypting each
tuple with the key corresponding to its acl (i.e., known only to the users autho-
rized to read the tuple). The inclusion in r[Resource] of the label enables autho-
rized users to know the key to be used for the decryption of the resource. The
primary index is built on encoded values computable only by the data owner.
For instance, the encoding function can be implemented through a cryptographic
hash function, using a key ko known only to the data owner (i.e., the encoded



Access Control for the Shuffle Index 137

Fig. 3. Primary shuffle index for the relation in Fig. 2(b)

value ι(v) for a tuple r with index value v can be computed as hash(v,ko)). Note
that, although each resource singularly taken appears encrypted in the leaves of
the primary index, all the nodes are (also) encrypted with a key k known to
every user in the system. This second encryption layer is necessary to enable
shuffling (Sect. 2).

Building the index on the encoded values provides protection of the original
index values, and their order relationship, against users and storing server that
observe the index on the encoded values. In fact, the encoding is non-invertible
(hence the encoded values do not leak any information on the original values),
and destroys the original ordering (hence the order relationship between encoded
value does not leak anything on the order relationship among the original values).

Figure 2(b) illustrates a primary index P for our running example. The order-
ing among the encoded values is reported with numbers on the left of the table.
Figure 3 illustrates the tree structure for such primary index. Note how the dif-
ferent order among the values to be indexed causes a different content within
the leaves and a different ordering among them, with respect to the shuffle index
in Fig. 1(a) built over the original (non-encoded) index values.

While the index on the encoded values provides the ability to traverse the
tree to look for the resource associated with an encoded value, to retrieve a given
resource (i.e., the resource corresponding to an original value for the indexing
attribute) one would need to know the encoding of such value. For instance,
resource Aresource would be stored in association with index value ι(A). The
encoding (i.e., the fact that ι(A) corresponds to A) is however known only to the
data owner.

The second index of our approach allows the data owner to selectively disclose
to users the mapping of encoding ι, releasing to every user the mapping for (all
and only) those values she is authorized to access. Such knowledge is provided
to each user ui encrypted with the user key ki (so to make it non intelligible to
other users and to the server) and is indexed with a user-based encoding, so to
provide a distinct mapping for every user ui, which can be computed only by
ui. The second index of our approach is therefore a secondary index providing
user-based mapping as follows.



138 S. De Capitani di Vimercati et al.

Fig. 4. Secondary shuffle index for the relation in Fig. 2(c)

Definition 4 (Secondary Index – User-based Mapping). Let R(I,
Resource) be a relation, I be the indexing attribute, P be a primary index for R
over I with encoding function ι, U be a set of users, {ιi | ui ∈ U} be a set of encoding
functions for I such that ιi is computable only by user ui and by the data owner,
and K be the set of encryption policy keys for R. A secondary index for R and P
is a shuffle index over relation S(I,Resource) having a tuple s for each pair 〈r, ui〉,
r ∈ R and ui ∈ acl(r), such that s[I] = ιi(r[I]) and s[Resource] = E(ki, ι(r[I])),
with E a symmetric encryption function and ki ∈ K.

For instance, the encoding function of each user ui can be implemented
as a cryptographic hash function, using a key ki known to user ui only (i.e.,
ιi(v) = hash(v,ki)). Figure 2(c) illustrates a secondary index for our running
example. Again, the number on the left of the table is the ordering among the
index values of the secondary index. Notice how, once again, the encoding does
not convey any information on the ordering of the original index values. Note
that the secondary index has a larger number of tuples than the original index,
since the encoding of an original index value is encrypted as many times as the
number of users who can access it. For instance, in our example, there are three
instances of ι(A). Figure 4 illustrates the tree structure for the index in Fig. 2(c).
We note however that the secondary index is very slim as the resources are sim-
ply the encryption, with the key of a user, of the owner encoding. While in our
examples, for simplicity, we maintain the same topology, the structure of the sec-
ondary index is independent from the structure of the primary index, meaning
that they may have different fan-out and height.

Note that the property of the encoding function of destroying the ordering
among original index values is particularly important to guarantee protection.
In fact, users will know all encoded values computed by the data owner (i.e.,
the co-domain of function ι), but will know the actual mapping (i.e., the actual
value v corresponding to ι(v)) only for the values they are allowed to access.
Figure 5(a–b) illustrates a possible logical organization for the primary and sec-
ondary index of our example, where for simplicity of illustration we assume the
logical organization to reflect (at this initial time) the abstract organization of
the tree. We distinguish blocks of the primary and secondary index by adding



Access Control for the Shuffle Index 139

prefix P and S, respectively, to their identifiers. The coloring represents the visi-
bility of users u1. Encoded values with grey background are those which remain
non intelligible to u1 as they are encoded with the mapping of other users (for
the secondary index) or their owner encoding is not disclosed to u1 (for the
primary index).

Since encoding does not preserve ordering, encoded values non intelligible to
a user will remain protected, as no inference can be drawn on them from their
presence or order relationships with respect to other encoded values which are
intelligible to her. For instance, consider the primary index in Fig. 5(b). User u1,
being authorized for B will know that ι(B) is the corresponding encoding. At the
same time, however, ι(Q), stored in the same node, remains non intelligible to
her. User u1 simply observes the presence of another encoded value but will be
able to infer neither its corresponding original value nor its order relationship
with respect to B.

4 Access Execution

We now illustrate how the two indexes described in the previous section are
jointly used for accessing a tuple of interest. To retrieve a tuple in R with value
v for I, a user ui would need to perform the following steps:

1. compute the user-based mapping ιi(v) = hash(v ,ki);
2. search ιi(v) in the secondary index S, retrieving the corresponding encoded

value ι(v);
3. search ι(v) in the primary index P, retrieving the corresponding target tuple.

As an example, consider the indexes in Fig. 5(a–b) and suppose that user u1

searches index value C. User u1 computes ι1(C) =hash(C,k1) and then searches
it in the secondary index in Fig. 5(a). The search returns block S205, from which
ι(C) is retrieved. Hence, u1 searches ι(C) in the primary index in Fig. 5(b). The
search returns block P202, from which u1 can retrieve resource Cresource.

Note that the steps above assume the searched value to be present in the
index. If the value is not present in the secondary index, its user-based mapping
does not appear in the block returned by step 2. In such a case, the process will
continue providing a random value for the search in step 3, so to provide to the
server the same observation as a successful search. Note also that the search for
a value that is present in the dataset but for which the searching user is not
authorized, present to the searching user the same observable as the search for a
missing value (hence not disclosing anything to the user about values she is not
authorized to access).

The steps above simply illustrate how to retrieve a target value. However,
both the primary and the secondary index are shuffle indexes and accesses should
not simply aim at the target value but should also be protected with the tech-
niques (cover, repeated searches, and shuffling) devoted to protect access confi-
dentiality. The application of these techniques on the two indexes is completely
independent, meaning that the choice of covers, repeated searches, and shuffling



140 S. De Capitani di Vimercati et al.

Secondary Index

(a)

Primary Index

(b)

Secondary Index

(c)

Primary Index

(d)

Fig. 5. Secondary and primary index before (a–b) and after (c–d) the access by u1 over
C. Secondary index: (i) cover: ι2(F), (ii) repeated access: [S001,S101,S202], (iii) shuf-
fling: S101→S102, S102→S103, S103→S101, S202→S205, S205→S209, S209→S202.
Primary index: (i) cover: ι(Q), (ii) repeated access: [P001,P102,P205], (iii) shuffling:
P101→P103, P102→P101, P103→P102, P202→P208, P205→P202, P208→P205. The
gray background denotes encoded values non intelligible to u1



Access Control for the Shuffle Index 141

can be completely independent in the two indexes. The only dependency among
the two indexes is the fact that - clearly - the target to be searched in the primary
index is the tuple retrieved by the search on the secondary index.

Covers, repeated searches, and shuffling on the primary and secondary index
work essentially in the same way as they work in the shuffle index in absence
of authorizations (Sect. 2). However, the nature of these indexes requires minor
adjustments in their application, as follows.

– Cover searches. For both the secondary and the primary indexes, cover
searches should be chosen from the set of encoded values, in contrast to the set
of original values. The reason for this is that every user has limited knowledge
on the set of original index values while she can have complete knowledge of
the encoded values in the indexes (i.e., of the complete co-domains of all the
encodings of all the users and the complete co-domain of the encoding of the
owner). Since the encoding is non-invertible, this knowledge does not leak any
information and allows the widest possible choice to the user.

– Repeated accesses. Repeated accesses for the primary and secondary indexes
should refer to blocks, instead of specific values. The reason for this is that
two subsequent accesses can be performed by two different users and therefore
considering repeated searches referred to values would leak to the second user
the target of the search of the previous user. Although such a leakage would be
only on encoded values, we avoid it simply by assuming repeated accesses to be
referred to blocks (and not to values) and to consider all accessed blocks, not
only the target. At every access we then store at the server the identifiers of the
blocks (target, covers, or repeated accesses) accessed during the last search.
The knowledge of such identifiers is sufficient for a user to repeat an access
to one of the paths visited by the search just before hers without revealing to
the user the target of the previous search (which might have been performed
by others).

– Shuffling . Shuffling works just like in the original proposal. We note that
when shuffling, a user may move also content which is not intelligible to her.
However, she will not be able to change the content for which she is not autho-
rized (since she would not know the encryption key and tampering would be
detected). Note that since all physical blocks stored at the server are encrypted
(with a key shared between all users and the data owner) and encryption of
the block as a whole is refreshed at every shuffle, the server cannot detect
whether the content of a block (or part of it) has changed or not. Hence, the
fact that a user can operate only on a portion of the block does not prevent
correct execution of the shuffling operation.

The pseudocode of the algorithm accessing and managing the primary and
the secondary index is reported in Appendix.

Figure 5(a–b) illustrates an example of access execution for search of value C by
user u1, assuming ι2(F) as cover and path [S001,S101,S202] as repeated access for
the secondary index, and ι(Q) as cover and path [P001,P102,P205] as a repeated
access for the primary index. Accessed nodes are, besides the root, those anno-
tated (as target, cover, or repeated) in the figure. Figure 5(c–d) illustrates the new



142 S. De Capitani di Vimercati et al.

structure of the indexes that would result assuming shuffling: for the secondary
index as S101→S102, S102→S103, S103→S101, S202→S205, S205→S209, and
S209→S202; for the primary index as P101→P103, P102→P101, P103→P102,
P202→P208, P205→P202, P208→P205.

5 Analysis

We discuss the protection guarantees (i.e., the correct enforcement of authoriza-
tions and the protection of access and pattern confidentiality) and the perfor-
mance of our approach.

Access control enforcement. To demonstrate that the primary and secondary
indexes described in Sect. 3 guarantee the correct enforcement of the access con-
trol policy, we need to prove that each user ui can access all and only the
resources and index values in R she is authorized to access. Formally, ∀ui ∈ U :
(i) ui can access resource r[Resource] iff ui ∈ acl(r); (ii) ui can see an index
value v iff ∃r ∈R s.t. r[I] = v and ui ∈acl(r).

Consider a user ui s.t. acl(r)= {ui1 , . . . , uin} and ui ∈{ui1 , . . . , uin}. We need
to show that ui can retrieve the plaintext content of tuple r. A user ui can retrieve
and decrypt r iff: (i) ui can compute ιi(r[I]); (ii) ∃!s ∈ S s.t. s[I] = ιi(r[I]) and
s[Resource] = E(ki, ι(r[I])); (iii) ∃!p ∈ P s.t. p[I] = ι(r[I]) and p[Resource] =
〈�i1,...,in , E(ki1,...,in , r[Resource])〉; and (iv) ui can visit S and P.

User ui can compute ιi(r[I]) since it is defined as hash(r[I], ki) and ui knows
key ki, by Definition 2. Tuple s exists and belongs to S by Definition 4. Tuple
p exists and belongs to P by Definition 3. User ui can decrypt the content of
s[Resource] as she knows ki ∈ Ki, and the content of p[Resource] as she knows
ki1,...,in ∈Ki because ui ∈acl(r), by Definition 2. Any authorized user, including
ui, can visit both S and P since she knows both the encryption key k used by
the data owner to encrypt nodes content to enable shuffling, and the co-domain
of the encoding functions.

Consider now a user ui s.t. acl(r)= {ui1 , . . . , uin} and ui 	∈ {ui1 , . . . , uin}.
We need to show that ui can access neither the plaintext content of r[Resources],
nor index value r[I]. It is immediate to see that ui cannot access the plaintext
content of the tuple since it is encrypted with a key kX (Definition 3) that ui does
not know. In fact, by Definition 3, since ui does not belong to acl(r), she does
not know the corresponding encryption key. User ui cannot compute or guess
index value r[I] because r[I] is never represented in internal or leaf nodes of the
primary and secondary indexes; it is instead represented via its encoded value
(i.e., ι(r[I]) in the primary index and ιj(r[I]), ∀uj ∈ acl(r), in the secondary
index). Since the encoding function is, by Definition 1, non-invertible, ui cannot
exploit her knowledge of encoded values to retrieve the corresponding original
index values. Also, the traversal of the primary (and secondary) index does not
reveal ui anything about the original index values. In fact, by Definition 1, the
encoding function does not preserve the order relationship among values. Hence,
similar encoded values (e.g., represented in the same leaf) may not correspond
to similar original values (and vice versa).



Access Control for the Shuffle Index 143

Access confidentiality. We first consider the storing server as our observer and
analyze the protection offered by our proposal for the novel aspects introduced
with respect to the shuffle index proposal in [7]. Like in the original proposal, we
focus the analysis on the leaves of the shuffle index. In fact, nodes at a higher
level are subject to a greater number of accesses, due to the multiple paths that
pass through them, and are then involved in a larger number of shuffling oper-
ations, which increase their protection. A search operation on the primary and
secondary index operates as in the original proposal. Hence, it enjoys the pro-
tection guarantees given by the combined adoption of covers, repeated searches,
and shuffling. In the considered scenario, however, we operate with two indexes
and each search for a value entails an access to the secondary index followed by
an access to the primary index. The targets of the two accesses are related as
they are the encoding of the same original index value. However, both indexes
protect the target of accesses (as well as patterns thereof) and the covers and
repeated searches adopted for the two indexes are different. This practice pre-
vents the server from identifying any correspondence between the values in the
leaves of the two indexes.

We now consider a user as our observer. A user can observe the blocks
accessed by another user in a previous access (for repeated accesses), but she
cannot identify the target of the access. In fact, this set of blocks includes the tar-
get, covers, and repeated accesses. Furthermore, each leaf stores multiple encoded
values, which correspond to index values that are not close to each other since
the encoding function is not order-preserving. A user can also possibly trace
shuffling operations, but this would require her to download the whole index at
each access.

Performance evaluation. The performance of the system is assessed as the
average response time experienced by an authorized client when submitting an
access request. System configurations providing a primary index and a secondary
index with fixed heights and different fan-outs exhibit similar average response
times for the client request. Moreover, varying the number of authorized users
and the size of the access control lists do not significantly influence the perfor-
mance of the system as long as the fan-out of the secondary index is chosen to
be reasonably large. Our experiments show that the latency of the network is
the factor with the greatest impact in a large-bandwidth LAN/WAN scenario.
To assess the performance of our algorithm, we configured the primary index
and the secondary index as 3-layer unchained B+-trees with fan-out 512, both
of them built on a numerical candidate key of fixed-length to allow the indexing
of more than 200K different values. The size of the blocks (nodes) of each index
was 8KiB. The hardware used in the experiments included a client machine
with an Intel Core i5-2520M CPU at 2.5GHz, L33MiB, 8GiB RAM DDR3 1066,
running an Arch Linux OS. The server machine run an Intel Core i7-920 CPU
at 2.6GHz, L38MiB, 12GiB, RAM DDR3 1066, 120GiB SSD disk running an
Ubuntu OS. The network environment was configured through the NetEm suite
for Linux operating systems to emulate a typical WAN interactive traffic with
a round-trip time modeled as a normal distribution with mean of 100ms and



144 S. De Capitani di Vimercati et al.

standard deviation of 2.5ms. The performance figures obtained for accessing the
secondary and the primary index exhibit an average value equal to 750ms, which
compares favorably with the response time of 630ms experienced by the client
when accessing two plain encrypted indexes (i.e., without shuffling).

6 Related Work

Classical works on data outsourcing protect data (content) confidentiality
by wrapping a layer of encryption around them, and support query evalua-
tion through indexes (i.e., metadata complementing the outsourced encrypted
dataset) or through specific cryptographic techniques that support keyword-
based searches (e.g., [10,18]). Solutions for protecting access and pattern con-
fidentiality are based on Private Information Retrieval (PIR) techniques or
on dynamically allocated data structures, which change the physical location
where data are stored at each access (e.g., [1,5–8,13,14,16,17,19]). PIR solu-
tions are computationally expensive and do not protect content confidential-
ity (e.g., [1,14]). The Oblivious RAM (ORAM) dynamic structure, which has
been extensively studied, guarantees content, access, and pattern confidentiality
(e.g., [19]). While preliminary proposals suffer from high computational and com-
munication overheads, recent attempt to make ORAM more practical in real-
world scenarios (e.g., ObliviStore [16] and Path ORAM [17]). Besides ORAM
structure, also tree-based dynamically allocated structures have been studied
that provide a good trade-off between privacy and performance (e.g., [5–8,13]).
In particular, the shuffle index has first been proposed in [5] and then extended
to support concurrent accesses by different users [6], to operate in a distributed
scenario characterized by the presence of multiple (three) storage servers [8],
and to support insertion and removal of tuples in the outsourced relation [7]. All
these solutions, however, are based on the implicit assumption that a user can
access either all the tuples in the leaves of the shuffle index or none of them.

A related line of work addresses the problem of enforcing access control
restrictions over outsourced data. These solutions are based on the idea that the
data themselves should enforce the access control policy. Current approaches fol-
low two different strategies: selective encryption (e.g., [3]), and attribute-based
encryption (e.g., [9]). Our work extends selective encryption proposals since we
combine the shuffle index with selective encryption to enable efficient access to
the data through a tree-based index, while not revealing to users index values
they are not authorized to access [4].

7 Conclusions

We have presented an approach to enrich the shuffle index with access control.
The enriched shuffle index provides guarantees of access confidentiality while
enabling data owners to regulate access to their data selectively granting visibil-
ity to users. Also, like the original proposal, it has limited performance overhead.



Access Control for the Shuffle Index 145

Acknowledgements. This work was supported in part by the EC within the 7FP
under grant agreement 312797 (ABC4EU) and within the H2020 under grant agreement
644579 (ESCUDO-CLOUD).

A Access Execution Algorithm

Figure 6 illustrates the algorithm, executed at the client side, searching for a
value in the primary and secondary index. The algorithm operates as discussed
in Sect. 4 and relies on function Search to access the primary and secondary
index structures.

Function Search receives as input the shuffle index T on which it should
operate, the index value target value target of the access, and the number
num cover of covers to be adopted. It returns the tuple r with index value
target value (if any). The function randomly chooses num cover+1 values in
the domain of the (primary or secondary) index and it downloads from the server
the identifiers of the blocks visited by the previous search (lines 1–3). It then
visits the shuffle index level by level, starting from the root. At each level level,
the function determines the identifiers of the nodes along the path to the target,
covers, and repeated access (lines 5–8). If the block along the path to the target
has been accessed by the previous search, it is repeated (an additional cover is
used). The function downloads from the server and decrypts the blocks of inter-
est (line 13) and shuffles their content (line 16). To guarantee the correctness
of the search and of the index structure, the function updates the references to
children of the nodes accessed at level level-1 (which are the parents of the nodes
shuffled at level level), variables target, repeated, and cover[1, . . . , num cover]
(lines 17–21). The nodes at level level-1 are then encrypted and written at the
server. The identifiers of the nodes accessed at level level are then used to update
repeated search[level] (line 23). Once the leaf node where target value is pos-
sibly stored has been reached, the function extracts and returns the tuple with
index value equal to target value (lines 25–27).

Given the request by user ui to search for value target value, the algorithm
computes the user-based mapping ιi(target value) and invokes function Search
to search for such a value in the secondary index (lines 1–4). It decrypts the
tuple retrieved by function Search, obtaining the encoded value ι(target value)
for target value (line 5). If such a value is not null (meaning that there is a
tuple that ui can access with index value equal to target value), the algorithm
invokes function Search over the primary index, looking for ι(target value). It
then computes/retrieves the encryption key necessary to decrypt the retrieved
resource and decrypts it. It returns the plaintext resource to the user (lines 7–11).
If the result of function Search over the secondary index is null, the algorithm
runs a fake search over the primary index (not to disclose any information to
other users and to the server about ui’s privileges) and returns an empty resource
to the user (lines 12–14).



146 S. De Capitani di Vimercati et al.

/* P, S : primary and secondary index */
/* num cover : number of cover searches */
/* ui,ki : user performing the access and her key */
/* hash : non-invertible cryptographic hash function */

INPUT target value : value to be searched in the shuffle index
OUTPUT resource with index value target value

MAIN
1: /* Phase 1: compute the user-based mapping ιi(target value) */
2: target idx := hash(target value, ki)
3: /* Phase 2: search ιi(target value) in the secondary index */
4: s := Search(S,target idx ,num cover)
5: target idx := decrypt s [Resource] with ki /* encoded value ι(target value) */
6: /* Phase 3: search ι(target value) in the primary index */
7: if target idx = null then
8: p := Search(P,target idx ,num cover)
9: k := retrieve key k with label , where p [Resource]= ,content

10: result := decrypt content with k
11: return(result)
12: else target idx := randomly choose a value for ι(target value)
13: Search(P,target idx ,num cover)
14: return(null)

SEARCH(T ,target value,num cover)
1:repeated search[0, . . . , T .height] := download and decrypt the blocks of accesses for T
2:randomly choose cover value[1. . .num cover+1] for target value in the co-domain of hash
3:repeated := repeated search[0] /* identifier of the root block */
4: for level:=1. . .T .height do
5: /* identify the blocks to read from the server */
6: target := identifier of the node at level level along the path to target value
7: cover [i] := id of the node at level level along the path to cover value[i], i=1. . .num cover+1
8: repeated := block identifier in repeated search[level] that is a descendant of repeated
9: if target is the identifier of a node in repeated search[level] then

10: repeated := target, num cover := num cover−1
11: ToGet := {target,repeated} ∪ cover [1. . .num cover ] /* ids of the blocks to be downloaded */
12: /* read blocks */
13: Nodes := download and decrypt the blocks with identifier in ToGet
14: /* shuffle nodes */
15: let π be a permutation of the identifiers of nodes in Nodes
16: shuffle nodes in Nodes according to π
17: update pointers to children of the parents of nodes in Nodes according to π
18: encrypt and write at the server nodes accessed at iteration level − 1
19: target := π(target)
20: cover [i] := π(cover [i]), i=1. . .num cover+1
21: repeated := π(repeated)
22: /* update the repeated search at level level */
23: repeated search[level] := ToGet
24: encrypt and write at the server nodes accessed at iteration T .height and repeated search
25: let n∈Nodes the node with n.id=target
26: let r∈n be the tuple such that r [I ]=target value
27: return(r )

Fig. 6. Shuffle index access algorithm

References

1. Cachin, C., Micali, S., Stadler, M.A.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

2. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Over-encryption: management of access control evolution on outsourced data. In:
Proceedings of VLDB, Vienna, Austria, September 2007



Access Control for the Shuffle Index 147

3. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM TODS 35(2),
12:1–12:46 (2010)

4. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Private data indexes for selective access to outsourced data. In: Proceedings of
WPES 2011, Chicago, IL, October 2011

5. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati,
P.: Efficient and private access to outsourced data. In: Proceedings of ICDCS,
Minneapolis, MN, June 2011

6. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Supporting concurrency and multiple indexes in private access to outsourced data.
JCS 21(3), 425–461 (2013)

7. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Shuffle index: efficient and private access to outsourced data. ACM TOS 11(4),
19:1–19:55 (2015)

8. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Three-server swapping for access confidentiality. IEEE TCC (2016). pre-print

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of CCS, Alexandria, VA,
October–November 2006

10. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data
in the database-service-provider model. In: Proceedings of SIGMOD, Madison, WI,
June 2002

11. Jhawar, R., Piuri, V.: Fault tolerance management in IaaS clouds. In: Proceedings
of ESTEL. Rome, Italy, October 2012

12. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource
management in cloud computing. In: Proceedings of CSE. Paphos, Cyprus, Decem-
ber 2012

13. Lin, P., Candan, K.: Hiding traversal of tree structured data from untrusted data
stores. In: Proceedings of WOSIS, Porto, Portugal, April 2004

14. Ostrovsky, R., Skeith III, W.E.: A survey of single-database private information
retrieval: techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007)

15. Samarati, P., De Capitani di Vimercati, S.: Cloud security: issues and concerns.
In: Murugesan, S., Bojanova, I. (eds.) Encyclopedia on Cloud Computing. Wiley
(2016)

16. Stefanov, E., Shi, E.: ObliviStore: high performance oblivious cloud storage. In:
Proceedings of IEEE S&P, San Francisco, CA, May 2013

17. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path ORAM: an extremely simple oblivious RAM protocol. In: Proceedings of
CCS, Berlin, Germany, November 2013

18. Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword
search over outsourced cloud data. IEEE TPDS 23(8), 1467–1479 (2012)

19. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: Proceedings of CCS,
Alexandria, VA, October 2008


	Access Control for the Shuffle Index
	1 Introduction
	2 Shuffle Index
	3 Primary and Secondary Indexes for Access Control
	4 Access Execution
	5 Analysis
	6 Related Work
	7 Conclusions
	A Access Execution Algorithm
	References


